论文标题
DynamicFilter:高度动态环境的在线动态对象删除框架
DynamicFilter: an Online Dynamic Objects Removal Framework for Highly Dynamic Environments
论文作者
论文摘要
当机器人在城市环境中导航时,大量动态物体的出现将使空间结构多样化。因此,在线删除动态对象至关重要。在本文中,我们为高度动态的城市环境介绍了一个新颖的在线拆除框架。该框架由扫描到图的前端和地图对后端模块组成。前端和后端都深入整合了基于可见性的方法和基于地图的方法。该实验在高度动态的模拟方案和现实世界数据集中验证了框架。
Emergence of massive dynamic objects will diversify spatial structures when robots navigate in urban environments. Therefore, the online removal of dynamic objects is critical. In this paper, we introduce a novel online removal framework for highly dynamic urban environments. The framework consists of the scan-to-map front-end and the map-to-map back-end modules. Both the front- and back-ends deeply integrate the visibility-based approach and map-based approach. The experiments validate the framework in highly dynamic simulation scenarios and real-world datasets.