论文标题
基于石墨烯的高性能宽带光电检测 - MOS $ _ {2x} $ SE $ _ {2(1-x)} $合金工程光晶体管
High performance Broadband Photodetection Based on Graphene -- MoS$_{2x}$Se$_{2(1-x)}$ Alloy Engineered Phototransistors
论文作者
论文摘要
合金工程的概念已成为一种可行的技术,用于调整带隙,并在二维过渡金属二分法(TMDC)中进行工程缺陷水平。通过化学途径合成这些超薄TMDC材料的可能性为制造混合多功能设备打开了现实的可能性。通过将纳米片与Mos $ _ {2x} $ SE $ _ {2(1-X)} $(x = 0至1)的不同复合材料合成,使用简单的化学方法,我们系统地研究了三个终端混合设备的照片响应特性,通过用这些Nanoshe将大面积素描器进行装饰(x = 0,0.5,0.5,0.5,1),2d-2d-2d-2d-2d-2d-2d-s in 2d-s in 2d-contressions office ose。其中,石墨烯杂种杂交光晶体管比其二元对应物具有优质的光电特性。该设备表现出极高的光反应性(> 10 $^4 $ A/W),低噪声等效功率(〜10 $^{ - 14} $ W/Hz $^{0.5} $),更高的特异性检测率(〜10 $^{11} $ Jones)在宽阔的UV-NIR(365-810 nm)中具有出色的Gate Tunability范围。 MOSSE的宽带光吸收,在石墨烯中的超快电荷传输以及MOSSE中可控的缺陷工程使该设备非常吸引人。我们的工作证明了MOS $ _ {2x} $ SE $ _ {2(1-X)} $合金的晶状体规模的生产,这表明了较大面积的可伸缩性,对高性能光电设备的便捷和可扩展制造具有重要意义,并为Van-der-der-der-der-der-der-der-der-der-der-der-der-der-der-derions Internations提供重要的见解。
The concept of alloy engineering has emerged as a viable technique towards tuning the bandgap as well as engineering the defect levels in two-dimensional transition metal dichalcognides (TMDC). Possibility to synthesize these ultrathin TMDC materials through chemical route has opened realistic possibilities to fabricate hybrid multi-functional devices. By synthesizing nanosheets with different composites of MoS$_{2x}$Se$_{2(1-x)}$ (x = 0 to 1) using simple chemical methods, we systematically investigate the photo response properties of three terminal hybrid devices by decorating large area graphene with these nanosheets (x = 0, 0.5, 1) in 2D-2D configurations. Among them, graphene-MoSSe hybrid phototransistor exhibits superior optoelectronic properties than its binary counterparts. The device exhibits extremely high photoresponsivity (>10$^4$ A/W), low noise equivalent power (~10$^{-14}$ W/Hz$^{0.5}$), higher specific detectivity (~ 10$^{11}$ Jones) in the wide UV-NIR (365-810 nm) range with excellent gate tunability. The broadband light absorption of MoSSe, ultrafast charge transport in graphene, along with controllable defect engineering in MoSSe makes this device extremely attractive. Our work demonstrates the large area scalability with wafer-scale production of MoS$_{2x}$Se$_{2(1-x)}$ alloys, having important implication towards facile and scalable fabrication of high-performance optoelectronic devices and providing important insights into the fundamental interactions between van-der-Waals materials.