论文标题

通过散射方程推动,并应用于正数量

Pushforwards via Scattering Equations with Applications to Positive Geometries

论文作者

Lukowski, Tomasz, Moerman, Robert, Stalknecht, Jonah

论文摘要

在本文中,我们探索并扩展了两个现代散射幅度的现代描述,CHY形式主义和正数的框架,这是由散射方程促进的。对于Chy家族中的理论,其$ S $ -MATRIX被运动空间中的一些积极几何形状捕获,可以通过在Chy Moduli空间中定义的正式几何形式的散射方程获得相应的规范形式。为了在运动空间中计算这些规范形式,我们研究了通过散射方程推动前进任意理性差异形式的一般问题。我们开发了三种实现此目标的方法,而无需明确解决任何散射方程。我们的结果使用计算代数几何形状的技术,包括伴随矩阵和残基的全局二元性,并将相似结果应用于理性函数的应用到有理差异形式。

In this paper we explore and expand the connection between two modern descriptions of scattering amplitudes, the CHY formalism and the framework of positive geometries, facilitated by the scattering equations. For theories in the CHY family whose $S$-matrix is captured by some positive geometry in the kinematic space, the corresponding canonical form can be obtained as the pushforward via the scattering equations of the canonical form of a positive geometry defined in the CHY moduli space. In order to compute these canonical forms in kinematic spaces, we study the general problem of pushing forward arbitrary rational differential forms via the scattering equations. We develop three methods which achieve this without ever needing to explicitly solve any scattering equations. Our results use techniques from computational algebraic geometry, including companion matrices and the global duality of residues, and they extend the application of similar results for rational functions to rational differential forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源