论文标题

电子结构特性来自以原子密度为中心的预测

Electronic-structure properties from atom-centered predictions of the electron density

论文作者

Grisafi, Andrea, Lewis, Alan M., Rossi, Mariana, Ceriotti, Michele

论文摘要

分子或材料的电子密度最近作为机器学习模型的目标数量受到了重大关注。构建可传递可转移和线性缩放预测的模型的自然选择是使用类似于密度拟合近似值通常使用的多中心原子基础来表示标量场。但是,基础的非正交性对学习练习构成了挑战,因为它需要立即考虑所有原子密度成分。我们设计了一种基于梯度的方法,可以在优化且高度稀疏的特征空间中直接最大程度地减少回归问题的损失函数。这样,我们克服了与采用以原子为中心的模型相关的局限性,以在任意复杂的数据集上学习电子密度,从而获得极为准确的预测。增强的框架已在32个液体水的32个周期细胞上进行测试,具有足够的复杂性,需要在准确性和计算效率之间取得最佳平衡。我们表明,从预测的密度开始,可以执行单个Kohn-Sham对角度步骤,以访问总能量组件,而总能量组件仅针对参考密度功能计算,误差仅为0.1 MEV/ATOM。最后,我们测试了高度异质QM9基准数据集的方法,表明训练数据的一小部分足以在化学精度内得出地面总能量。

The electron density of a molecule or material has recently received major attention as a target quantity of machine-learning models. A natural choice to construct a model that yields transferable and linear-scaling predictions is to represent the scalar field using a multi-centered atomic basis analogous to that routinely used in density fitting approximations. However, the non-orthogonality of the basis poses challenges for the learning exercise, as it requires accounting for all the atomic density components at once. We devise a gradient-based approach to directly minimize the loss function of the regression problem in an optimized and highly sparse feature space. In so doing, we overcome the limitations associated with adopting an atom-centered model to learn the electron density over arbitrarily complex datasets, obtaining extremely accurate predictions. The enhanced framework is tested on 32-molecule periodic cells of liquid water, presenting enough complexity to require an optimal balance between accuracy and computational efficiency. We show that starting from the predicted density a single Kohn-Sham diagonalization step can be performed to access total energy components that carry an error of just 0.1 meV/atom with respect to the reference density functional calculations. Finally, we test our method on the highly heterogeneous QM9 benchmark dataset, showing that a small fraction of the training data is enough to derive ground-state total energies within chemical accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源