论文标题
狭窄差距EU5IN2SB6中的巨大压电
Colossal piezoresistance in narrow-gap Eu5In2Sb6
论文作者
论文摘要
压电是对施加的机械应力($σ$)的材料电阻($ r $)的变化,是机电设备的驱动原理,例如应变仪,加速度计和悬臂力传感器。传统上,在两类不相关的材料中观察到了增强的压电:非磁性半导体和复合结构。我们报告发现在欧盟$ _5 $ _5 $ _2 $ sb $ _6 $的单晶中发现了一个非常大的压电,其中各向异性金属簇自然会在电子互动而在半导体矩阵中形成。 eu $ _5 $ in $ _2 $ sb $ _6 $显示出高度各向异性的压力,并且[001]的单轴压力仅为0.4〜GPA,导致电阻率下降超过99.95 \%,其巨大的colossaliansistance colossaliseistance因子均为5000 \ times $ 5000 \ times time 10^$ 11} $ 11} $ 11} $ 5000 \ time 10^$}我们的结果不仅揭示了相互作用和相位分离在实现巨大的压电中的作用,而且还突出了通往多功能设备的新型途径,对压力和磁场都有很大响应。
Piezoresistance, the change of a material's electrical resistance ($R$) in response to an applied mechanical stress ($σ$), is the driving principle of electromechanical devices such as strain gauges, accelerometers, and cantilever force sensors. Enhanced piezoresistance has been traditionally observed in two classes of uncorrelated materials: nonmagnetic semiconductors and composite structures. We report the discovery of a remarkably large piezoresistance in Eu$_5$In$_2$Sb$_6$ single crystals, wherein anisotropic metallic clusters naturally form within a semiconducting matrix due to electronic interactions. Eu$_5$In$_2$Sb$_6$ shows a highly anisotropic piezoresistance, and uniaxial pressure along [001] of only 0.4~GPa leads to a resistivity drop of more than 99.95\% that results in a colossal piezoresistance factor of $5000\times10^{-11}$Pa$^{-1}$. Our result not only reveals the role of interactions and phase separation in the realization of colossal piezoresistance, but it also highlights a novel route to multi-functional devices with large responses to both pressure and magnetic field.