论文标题
OMNI-SEG:用于肾脏病理图像分割的比例感知动态网络
Omni-Seg: A Scale-aware Dynamic Network for Renal Pathological Image Segmentation
论文作者
论文摘要
由于物体的异质尺度,肾脏病理图像的全面语义分割具有挑战性。例如,在整个幻灯片图像(WSI)上,肾小球的横截面区域的大约64倍,比周围毛细管的毛细血管大64倍,这使得以相同尺度上的两个贴片将两个对象分割成不切实际。为了解决这个扩展问题,先前的研究通常已经训练了多个分割网络,以匹配异质组织类型的最佳像素分辨率。这种多网络解决方案是资源密集型的,无法对组织类型之间的空间关系进行建模。在本文中,我们提出了Omni-Seg+网络,这是一种通过单个神经网络实现多对象(六种组织类型)和多尺度(5倍至40倍尺度)的多尺度(5倍至40倍)的动态神经网络。本文的贡献是三个方面的:(1)提出了一种新型的量表感知控制器,以将动态神经网络从单尺度到多尺度推广; (2)引入了伪标签的半监督一致性正规化,以建模未注释的组织类型的尺度相关性,以单个端到端的学习范式; (3)直接将在人类肾脏图像训练的模型中直接应用于小鼠肾脏图像,而无需再培训,就可以证明高尺度感知的概括。通过从三种不同分辨率下从六种组织类型中学习的约150,000个人类病理图像斑块,我们的方法根据人类的视觉评估和图像词的评估(即空间转录组学)实现了卓越的分割性能。官方实施可在https://github.com/ddrrnn123/omni-seg上获得。
Comprehensive semantic segmentation on renal pathological images is challenging due to the heterogeneous scales of the objects. For example, on a whole slide image (WSI), the cross-sectional areas of glomeruli can be 64 times larger than that of the peritubular capillaries, making it impractical to segment both objects on the same patch, at the same scale. To handle this scaling issue, prior studies have typically trained multiple segmentation networks in order to match the optimal pixel resolution of heterogeneous tissue types. This multi-network solution is resource-intensive and fails to model the spatial relationship between tissue types. In this paper, we propose the Omni-Seg+ network, a scale-aware dynamic neural network that achieves multi-object (six tissue types) and multi-scale (5X to 40X scale) pathological image segmentation via a single neural network. The contribution of this paper is three-fold: (1) a novel scale-aware controller is proposed to generalize the dynamic neural network from single-scale to multi-scale; (2) semi-supervised consistency regularization of pseudo-labels is introduced to model the inter-scale correlation of unannotated tissue types into a single end-to-end learning paradigm; and (3) superior scale-aware generalization is evidenced by directly applying a model trained on human kidney images to mouse kidney images, without retraining. By learning from ~150,000 human pathological image patches from six tissue types at three different resolutions, our approach achieved superior segmentation performance according to human visual assessment and evaluation of image-omics (i.e., spatial transcriptomics). The official implementation is available at https://github.com/ddrrnn123/Omni-Seg.