论文标题

比较附近星系中内容的NED和SIMBAD分类

Comparing NED and SIMBAD classifications across the contents of nearby galaxies

论文作者

Kuhn, L., Shubat, M., Barmby, P.

论文摘要

分类和分类天体是观察天体物理学的基本活动之一。在这项工作中,我们比较了两个综合数据库的内容,即NASA外层次数据库(NED)以及附近星系附近的天文数据(SIMBAD)的一组识别,测量和书目。这两个数据库采用不同的分类方案 - 一种平面和一个分层 - 我们的目标是确定共同对象的分类兼容性。搜索两个数据库在局部音量星系样品中约1300个单个星系中每个单个星系中的相应的同位半径内的对象搜索,我们发现,NED平均包含大约十倍的simbad条目和大约三分之二的simbad对象,将位置匹配到一个NED对象,在5个Arcsecond Arcsecnecscond colerance中。这些数量不大取决于父星系的特性。我们开发了一种算法来比较两个数据库之间的单个对象分类,并发现88%的分类同意;我们得出的结论是,NED和Simbad包含一致的信息,用于附近星系附近的共同来源。由于许多星系仅在NED或SIMBAD之一中包含许多资源,因此最好通过使用两个数据库来提供最完整的单个星系内容的研究人员。

Cataloguing and classifying celestial objects is one of the fundamental activities of observational astrophysics. In this work, we compare the contents of two comprehensive databases, the NASA Extragalactic Database (NED) and Set of Identifications, Measurements and Bibliography for Astronomical Data (SIMBAD) in the vicinity of nearby galaxies. These two databases employ different classification schemes -- one flat and one hierarchical -- and our goal was to determine the compatibility of classifications for objects in common. Searching both databases for objects within the respective isophotal radius of each of the ~1300 individual galaxies in the Local Volume Galaxy sample, we found that on average, NED contains about ten times as many entries as SIMBAD and about two thirds of SIMBAD objects are matched by position to a NED object, at 5 arcsecond tolerance. These quantities do not depend strongly on the properties of the parent galaxies. We developed an algorithm to compare individual object classifications between the two databases and found that 88% of the classifications agree; we conclude that NED and SIMBAD contain consistent information for sources in common in the vicinity of nearby galaxies. Because many galaxies have numerous sources contained only in one of NED or SIMBAD, researchers seeking the most complete picture of an individual galaxy's contents are best served by using both databases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源