论文标题

使用贝叶斯合奏方法预测足球运动员的价值

Prediction of Football Player Value using Bayesian Ensemble Approach

论文作者

Lee, Hansoo, Tama, Bayu Adhi, Cha, Meeyoung

论文摘要

体育运动员的转会费已成为天文学。这是因为将具有巨大未来价值的球员带入俱乐部对于他们的生存至关重要。我们介绍了一个案例研究,该案例研究基于FIFA数据分析,影响世界顶级足球运动员的转移费用。为了预测每个玩家的市场价值,我们通过使用树结构的Parzen估计量(TPE)算法优化其超参数来提出改进的LightGBM模型。我们通过Shapley添加说明(SHAP)算法确定突出的特征。已提出的方法已与基线回归模型(例如线性回归,拉索,弹性网,内核脊回归)和没有超参数优化的梯度增强模型进行了比较。与回归基线模型,GBDT和LightGBM模型相比,优化的LightGBM模型平均表现出的出色精度约为3.8、1.4和1.8倍。我们的模型在确定足球俱乐部将来应该考虑哪些属性时提供了解释性。

The transfer fees of sports players have become astronomical. This is because bringing players of great future value to the club is essential for their survival. We present a case study on the key factors affecting the world's top soccer players' transfer fees based on the FIFA data analysis. To predict each player's market value, we propose an improved LightGBM model by optimizing its hyperparameter using a Tree-structured Parzen Estimator (TPE) algorithm. We identify prominent features by the SHapley Additive exPlanations (SHAP) algorithm. The proposed method has been compared against the baseline regression models (e.g., linear regression, lasso, elastic net, kernel ridge regression) and gradient boosting model without hyperparameter optimization. The optimized LightGBM model showed an excellent accuracy of approximately 3.8, 1.4, and 1.8 times on average compared to the regression baseline models, GBDT, and LightGBM model in terms of RMSE. Our model offers interpretability in deciding what attributes football clubs should consider in recruiting players in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源