论文标题

脊柱癌检测和放射学分级的上下文感知变压器

Context-Aware Transformers For Spinal Cancer Detection and Radiological Grading

论文作者

Windsor, Rhydian, Jamaludin, Amir, Kadir, Timor, Zisserman, Andrew

论文摘要

本文提出了一种基于变压器的新型模型结构,用于涉及椎骨分析的医学成像问题。它考虑了此类模型在MR图像中的两种应用:(a)检测脊髓骨折和转移索压缩的相关条件,(b)椎间盘上常见变性变化的放射学分级。我们的贡献如下:(i)我们提出了一个脊柱上下文变压器(SCT),这是一种适合分析椎体(VBS)等医学成像中重复解剖结构的深度学习结构。与以前的相关方法不同,SCT考虑了所有可用图像模式中观看的所有VB,从而根据脊柱的其余部分和所有可用成像方式对每种图像进行预测。 (ii)我们将体系结构应用于新颖而重要的任务:检测脊柱转移以及绳索压缩和椎骨骨折的相关条件/多系列脊柱MR扫描中的崩溃。这是使用从自由文本放射学报告中提取的注释而不是定制注释来完成的。然而,所得模型与测试集上的椎骨定制放射科医生注释非常有着强烈的一致性。 (iii)我们还将SCT应用于现有问题:腰间椎间盘(IVD)在腰椎MR扫描中的放射学分级,以实现常见的退行性变化。我们表明,通过考虑图像中椎体的背景,SCT可以提高与先前发布模型相比的几个等级的精度。

This paper proposes a novel transformer-based model architecture for medical imaging problems involving analysis of vertebrae. It considers two applications of such models in MR images: (a) detection of spinal metastases and the related conditions of vertebral fractures and metastatic cord compression, (b) radiological grading of common degenerative changes in intervertebral discs. Our contributions are as follows: (i) We propose a Spinal Context Transformer (SCT), a deep-learning architecture suited for the analysis of repeated anatomical structures in medical imaging such as vertebral bodies (VBs). Unlike previous related methods, SCT considers all VBs as viewed in all available image modalities together, making predictions for each based on context from the rest of the spinal column and all available imaging modalities. (ii) We apply the architecture to a novel and important task: detecting spinal metastases and the related conditions of cord compression and vertebral fractures/collapse from multi-series spinal MR scans. This is done using annotations extracted from free-text radiological reports as opposed to bespoke annotation. However, the resulting model shows strong agreement with vertebral-level bespoke radiologist annotations on the test set. (iii) We also apply SCT to an existing problem: radiological grading of inter-vertebral discs (IVDs) in lumbar MR scans for common degenerative changes.We show that by considering the context of vertebral bodies in the image, SCT improves the accuracy for several gradings compared to previously published model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源