论文标题

使用K-Nearest邻居增强基于培养皿的随机剩余时间预测

Enhancing Stochastic Petri Net-based Remaining Time Prediction using k-Nearest Neighbors

论文作者

Vandenabeele, Jarne, Vermaut, Gilles, Peeperkorn, Jari, De Weerdt, Jochen

论文摘要

可靠的剩余时间预测正在进行的业务流程是一个高度相关的主题。一个例子是订单交付,这是一个关键的竞争因素,例如零售是因为它是客户满意度的主要驱动力。为了及时实现及时的交付,对交付过程的剩余时间进行准确的预测至关重要。在过程挖掘领域内,已经提出了各种各样的时间预测技术。在这项工作中,我们基于随机培养皿网的剩余时间预测,其与K-Neartheart邻居的过渡通常分布。 k-nearest邻居算法是在存储通过时间以完成先前活动的时间的简单矢量上执行的。通过仅采用一部分实例,获得了更具代表性和稳定的随机培养皿网,从而导致更准确的时间预测。我们讨论了该技术及其在Python中的基本实现,并使用不同的现实世界数据集来评估我们扩展的预测能力。这些实验在结合有关预测能力方面的两种技术时都具有明显的优势。

Reliable remaining time prediction of ongoing business processes is a highly relevant topic. One example is order delivery, a key competitive factor in e.g. retailing as it is a main driver of customer satisfaction. For realising timely delivery, an accurate prediction of the remaining time of the delivery process is crucial. Within the field of process mining, a wide variety of remaining time prediction techniques have already been proposed. In this work, we extend remaining time prediction based on stochastic Petri nets with generally distributed transitions with k-nearest neighbors. The k-nearest neighbors algorithm is performed on simple vectors storing the time passed to complete previous activities. By only taking a subset of instances, a more representative and stable stochastic Petri Net is obtained, leading to more accurate time predictions. We discuss the technique and its basic implementation in Python and use different real world data sets to evaluate the predictive power of our extension. These experiments show clear advantages in combining both techniques with regard to predictive power.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源