论文标题

重建的摩尔超级晶格中的孤子散开和铁电滞后

Soliton disentangling and ferroelectric hysteresis in reconstructed moire superlattices

论文作者

Li, Yanshuang, Zeng, Huan, Xie, Xiuhua, Li, Binghui, Liu, Jishan, Wang, Shuangpeng, Guo, Dengyang, Li, Yuanzheng, Liu, Weizhen, Shen, Dezhen

论文摘要

由晶格不匹配或/和扭曲角创建的Moire材料引起了人们对挖掘物质新型量子阶段的极大兴趣。后来,在空间反演对称性系统中出人意料地发现了新出现的界面铁电性,例如菱形堆积的双层过渡金属二进制二色质化(TMDS)。但是,与极化开关和磁滞相对应的Moire超级晶格的演变仍不清楚,这对于洞悉晶格对称性和带拓扑之间的相互作用以及开发光电记忆设备至关重要。在这里,我们报告了在重建的Moire超级晶格中观察到的声子在应变孤子网络上的观察,这是由于扭曲和放松引起的强烈的三重旋转对称性(C3)破裂引起的。语音拆分的间隔可通过垂直位移场调谐,并表现出与铁电相关的磁滞回路。这些声子进化特征归因于域壁运动过程中摩尔孤子的贡献和晶格粘度的贡献。此外,我们展示了原告验证的Moire铁电隧道连接处,其屏障通过净极化,隧道电动机的净极化修饰约10^4。我们的工作不仅揭示了Moire Solitons的晶格动力学,而且还为未来基于铁电的光电设备提供了潜在的途径。

Moire materials, created by lattice-mismatch or/and twist-angle, have spurred great interest in excavating novel quantum phases of matter. Latterly, emergent interfacial ferroelectricity has been surprisingly found in spatial inversion symmetry broken systems, such as rhombohedral-stacked bilayer transition metal dichalcogenides (TMDs). However, the evolution of moire superlattices corresponding to polarization switching and hysteresis is still unclear, which is crucial for giving insight into the interplay between lattice symmetry and band topology, as well as developing optoelectronic memory devices. Here we report on the observation of phonon splitting at strain soliton networks in reconstructed moire superlattices, arising from the twisting and relaxing induced strong three-fold rotational symmetry (C3) breaking. The interval of phonon splitting is tunable by a perpendicular displacement field and exhibits ferroelectric-related hysteresis loops. These phonon evolution features are attributed to the contribution of moire solitons disentangling and lattice viscosity during the motion of domain walls. Moreover, we demonstrate a proof-of-principle moire ferroelectric tunneling junction, whose barrier is modified by net polarization with a tunneling electroresistance of ~10^4. Our work not only reveals the lattice dynamics of moire solitons but also presents a potential pathway for future ferroelectric-based optoelectronic memory devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源