论文标题

DE-END:解码器驱动的水印网络

De-END: Decoder-driven Watermarking Network

论文作者

Fang, Han, Jia, Zhaoyang, Qiu, Yupeng, Zhang, Jiyi, Zhang, Weiming, Chang, Ee-Chien

论文摘要

随着机器学习的最新进展,研究人员现在能够通过新解决方案解决传统问题。在数字水印领域,正在广泛研究基于深度学习的水印技术。大多数现有的方法采用类似的编码驱动方案,我们将其命名为END(Encoder-Noiselayer-Decoder)架构。在本文中,我们对体系结构进行了改进,并创造性地设计了一个以解码器为导向的水印网络,该网络称为De-End,该网络的表现极大地超过了现有的基于最终的方法。设计除端的动机源于我们在最终体系结构中发现的潜在缺陷:编码器可以嵌入冗余功能,这些功能对于解码而不是必需的功能,从而限制了整个网络的性能。我们进行了详细的分析,发现这种限制是由编码器和解码器之间的不满意的耦合引起的。通过采用解码器编码器noiselayer-decoder架构来解决此类缺点。在De-End中,解码器首先处理主机图像以生成潜在特征映射,而不是直接馈入编码器。此潜在特征图与原始水印消息串联,然后由编码器处理。这种设计的变化至关重要,因为它使编码器和解码器的特征直接共享,从而更好地耦合编码器和解码器。我们进行了广泛的实验,结果表明,该框架的表现优于现有的基于最终的(SOTA)最终的深度学习水印,以视觉质量和鲁棒性。在相同的解码器结构的前提下,脱端的视觉质量(通过PSNR测量)提高了1.6dB(45.16dB至46.84db),JPEG压缩后的提取精度(QF = 50)胜过失真胜过4%以上(94.9%至99.1%)。

With recent advances in machine learning, researchers are now able to solve traditional problems with new solutions. In the area of digital watermarking, deep-learning-based watermarking technique is being extensively studied. Most existing approaches adopt a similar encoder-driven scheme which we name END (Encoder-NoiseLayer-Decoder) architecture. In this paper, we revamp the architecture and creatively design a decoder-driven watermarking network dubbed De-END which greatly outperforms the existing END-based methods. The motivation for designing De-END originated from the potential drawback we discovered in END architecture: The encoder may embed redundant features that are not necessary for decoding, limiting the performance of the whole network. We conducted a detailed analysis and found that such limitations are caused by unsatisfactory coupling between the encoder and decoder in END. De-END addresses such drawbacks by adopting a Decoder-Encoder-Noiselayer-Decoder architecture. In De-END, the host image is firstly processed by the decoder to generate a latent feature map instead of being directly fed into the encoder. This latent feature map is concatenated to the original watermark message and then processed by the encoder. This change in design is crucial as it makes the feature of encoder and decoder directly shared thus the encoder and decoder are better coupled. We conducted extensive experiments and the results show that this framework outperforms the existing state-of-the-art (SOTA) END-based deep learning watermarking both in visual quality and robustness. On the premise of the same decoder structure, the visual quality (measured by PSNR) of De-END improves by 1.6dB (45.16dB to 46.84dB), and extraction accuracy after JPEG compression (QF=50) distortion outperforms more than 4% (94.9% to 99.1%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源