论文标题
使用深度学习检测具有3D结构大脑MRI的精神分裂症
Detecting Schizophrenia with 3D Structural Brain MRI Using Deep Learning
论文作者
论文摘要
精神分裂症是一种慢性神经精神疾病,会在大脑内部引起不同的结构改变。我们假设将深度学习应用于结构性神经影像数据集可以检测到与疾病相关的改变,并提高分类和诊断准确性。我们使用单个可用的,常规的T1加权MRI扫描测试了这一假设,我们使用标准后处理方法从中提取了3D全脑结构。然后在三个开放数据集上开发,优化和评估了一个深度学习模型,并对精神分裂症患者进行T1加权MRI扫描。我们提出的模型的表现优于基准模型,该模型还使用3D CNN体系结构对结构MR图像进行了训练。我们的模型几乎能够完美地(ROC曲线下的区域= 0.987),将精神分裂症患者与在看不见的结构MRI扫描中区分健康对照。区域分析将皮层下区域和心室局部作为最预测的大脑区域。皮层结构在人类的认知,情感和社会功能中起关键作用,这些地区的结构异常与精神分裂症有关。我们的发现证实了精神分裂症与皮质下大脑结构的广泛改变有关,皮层结构信息为诊断分类提供了突出的特征。总之,这些结果进一步证明了深度学习的潜力,以改善精神分裂症的诊断,并从单个标准的T1加权脑MRI中确定其结构性神经影像学特征。
Schizophrenia is a chronic neuropsychiatric disorder that causes distinct structural alterations within the brain. We hypothesize that deep learning applied to a structural neuroimaging dataset could detect disease-related alteration and improve classification and diagnostic accuracy. We tested this hypothesis using a single, widely available, and conventional T1-weighted MRI scan, from which we extracted the 3D whole-brain structure using standard post-processing methods. A deep learning model was then developed, optimized, and evaluated on three open datasets with T1-weighted MRI scans of patients with schizophrenia. Our proposed model outperformed the benchmark model, which was also trained with structural MR images using a 3D CNN architecture. Our model is capable of almost perfectly (area under the ROC curve = 0.987) distinguishing schizophrenia patients from healthy controls on unseen structural MRI scans. Regional analysis localized subcortical regions and ventricles as the most predictive brain regions. Subcortical structures serve a pivotal role in cognitive, affective, and social functions in humans, and structural abnormalities of these regions have been associated with schizophrenia. Our finding corroborates that schizophrenia is associated with widespread alterations in subcortical brain structure and the subcortical structural information provides prominent features in diagnostic classification. Together, these results further demonstrate the potential of deep learning to improve schizophrenia diagnosis and identify its structural neuroimaging signatures from a single, standard T1-weighted brain MRI.