论文标题
部分可观测时空混沌系统的无模型预测
Design and Analysis of Robust Resilient Diffusion over Multi-Task Networks Against Byzantine Attacks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper studies distributed diffusion adaptation over clustered multi-task networks in the presence of impulsive interferences and Byzantine attacks. We develop a robust resilient diffusion least mean Geman-McClure-estimation (RDLMG) algorithm based on the cost function used by the Geman-McClure estimator, which can reduce the sensitivity to large outliers and make the algorithm robust under impulsive interferences. Moreover, the mean sub-sequence reduced method, in which each node discards the extreme value information of cost contributions received from its neighbors, can make the network resilient against Byzantine attacks. In this regard, the proposed RDLMG algorithm ensures that all normal nodes converge to their ideal states with cooperation among nodes. A statistical analysis of the RDLMG algorithm is also carried out in terms of mean and mean-square performances. Numerical results evaluate the proposed RDLMG algorithm in applications to multi-target localization and multi-task spectrum sensing.