论文标题
改善结构不确定性下的数据驱动的异质治疗效果估计
Improving Data-driven Heterogeneous Treatment Effect Estimation Under Structure Uncertainty
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Estimating how a treatment affects units individually, known as heterogeneous treatment effect (HTE) estimation, is an essential part of decision-making and policy implementation. The accumulation of large amounts of data in many domains, such as healthcare and e-commerce, has led to increased interest in developing data-driven algorithms for estimating heterogeneous effects from observational and experimental data. However, these methods often make strong assumptions about the observed features and ignore the underlying causal model structure, which can lead to biased HTE estimation. At the same time, accounting for the causal structure of real-world data is rarely trivial since the causal mechanisms that gave rise to the data are typically unknown. To address this problem, we develop a feature selection method that considers each feature's value for HTE estimation and learns the relevant parts of the causal structure from data. We provide strong empirical evidence that our method improves existing data-driven HTE estimation methods under arbitrary underlying causal structures. Our results on synthetic, semi-synthetic, and real-world datasets show that our feature selection algorithm leads to lower HTE estimation error.