论文标题

优化的数值梯度和Hessian估计值

Optimized numerical gradient and Hessian estimation for variational quantum algorithms

论文作者

Teo, Y. S.

论文摘要

采样嘈杂的中间尺度量子设备是一个基本步骤,可将相干量子电路输出转换为测量数据,用于在成本功能优化任务中利用梯度和HESSIAN方法运行的变异量子算法。但是,此步骤介绍了由此产生的梯度或Hessian计算中的估计错误。为了最大程度地减少这些错误,我们讨论了可调的数值估计器,这些估计量是有限差异(包括其广义版本)和缩放参数偏移估计器[在Phys中引入的。 Rev. A 103,012405(2021)],并提出了操作电路平均方法以优化它们。我们表明,这些优化的数值估计器提供估计误差,这些估计误差与给定采样拷贝数的电路量子数呈指数下降,从而揭示了与Barren-Plateau现象的直接兼容性。特别是,存在一个关键的采样拷贝数,在该数字中,优化的差估计器与标准(分析)参数切换估计器相比,估计器的平均估计误差较小,该估计器准确地计算了梯度和Hessian组件。此外,此临界数量随电路标数的数字呈指数增长。最后,通过放弃分析性,我们证明了缩放的参数转移估计器在任何情况下都以估计准确性击败了标准的未量化估计值,并且具有可比的性能与差异估计量的差异估计量相当,并且如果较大的拷贝数量负担得起,则是最佳的副本范围。

Sampling noisy intermediate-scale quantum devices is a fundamental step that converts coherent quantum-circuit outputs to measurement data for running variational quantum algorithms that utilize gradient and Hessian methods in cost-function optimization tasks. This step, however, introduces estimation errors in the resulting gradient or Hessian computations. To minimize these errors, we discuss tunable numerical estimators, which are the finite-difference (including their generalized versions) and scaled parameter-shift estimators [introduced in Phys. Rev. A 103, 012405 (2021)], and propose operational circuit-averaged methods to optimize them. We show that these optimized numerical estimators offer estimation errors that drop exponentially with the number of circuit qubits for a given sampling-copy number, revealing a direct compatibility with the barren-plateau phenomenon. In particular, there exists a critical sampling-copy number below which an optimized difference estimator gives a smaller average estimation error in contrast to the standard (analytical) parameter-shift estimator, which exactly computes gradient and Hessian components. Moreover, this critical number grows exponentially with the circuit-qubit number. Finally, by forsaking analyticity, we demonstrate that the scaled parameter-shift estimators beat the standard unscaled ones in estimation accuracy under any situation, with comparable performances to those of the difference estimators within significant copy-number ranges, and are the best ones if larger copy numbers are affordable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源