论文标题
Lorentz-Minkowski 4空间中非曲子曲线产生的运河高度曲面
Canal Hypersurfaces Generated by Non-Null Curves in Lorentz-Minkowski 4-Space
论文作者
论文摘要
在本文中,首先,我们获得了运河高度曲面的一般表达,这些表面形成为伪超球,伪夸张的超透明和null Hypercones的一个家族,并在$ e_ {1}^{1}^{4} $中,并给出了一些几何均值和诸如单位的常规范围,cur uss cur cur,cur culs culs cur,cur culs cur,曲率。同样,我们还为它们的扁平度和最小性条件和魏因丁运河超曲面提供了一些结果。同样,我们通过拿恒定半径函数来获得$ e_ {1}^{4} $中管道高曲面的这些特征,最后我们构造一些示例并借助Mathematica来可视化它们。
In the present paper, firstly we obtain the general expression of the canal hypersurfaces which are formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hypercones in $E_{1}^{4}$ and give their some geometric invariants such as unit normal vector fields, Gaussian curvatures, mean curvatures and principal curvatures. Also we give some results about their flatness and minimality conditions and Weingarten canal hypersurfaces. Also, we obtain these characterizations for tubular hypersurfaces in $E_{1}^{4}$ by taking constant radius function and finally we construct some examples and visualize them with the aid of Mathematica.