论文标题
障碍检测安全评估的相互作用 - 动力学感知区域
Interaction-Dynamics-Aware Perception Zones for Obstacle Detection Safety Evaluation
论文作者
论文摘要
为了实现安全的自动驾驶汽车(AV)操作,至关重要的是,AV的障碍检测模块可以可靠地检测出构成安全威胁的障碍物(即是安全至关重要的)。因此,希望对感知系统的评估指标捕获对象的安全性 - 安全性。不幸的是,现有的感知评估指标倾向于对物体做出强烈的假设,而忽略了代理之间的动态相互作用,因此无法准确捕获现实中的安全风险。为了解决这些缺点,我们通过考虑自我车辆和现场障碍之间的闭环动态相互作用来引入一种互动障碍感知障碍检测评估度量指标。通过从最佳控制理论(即汉密尔顿 - 雅各比的可达性)借用现有理论,我们提出了一种可构造``安全区域''的计算方法:一个国家空间中的一个区域,该区域定义了安全关键障碍的位置,以确定安全指标的目的。我们提出的安全区已在数学上完成,并且可以轻松计算以反映各种安全要求。使用Nuscenes检测挑战排行榜的现成检测算法,我们证明我们的方法是计算轻量级的,并且可以更好地捕获与基线方法相比,可以更好地捕获关键的安全感知错误。
To enable safe autonomous vehicle (AV) operations, it is critical that an AV's obstacle detection module can reliably detect obstacles that pose a safety threat (i.e., are safety-critical). It is therefore desirable that the evaluation metric for the perception system captures the safety-criticality of objects. Unfortunately, existing perception evaluation metrics tend to make strong assumptions about the objects and ignore the dynamic interactions between agents, and thus do not accurately capture the safety risks in reality. To address these shortcomings, we introduce an interaction-dynamics-aware obstacle detection evaluation metric by accounting for closed-loop dynamic interactions between an ego vehicle and obstacles in the scene. By borrowing existing theory from optimal control theory, namely Hamilton-Jacobi reachability, we present a computationally tractable method for constructing a ``safety zone'': a region in state space that defines where safety-critical obstacles lie for the purpose of defining safety metrics. Our proposed safety zone is mathematically complete, and can be easily computed to reflect a variety of safety requirements. Using an off-the-shelf detection algorithm from the nuScenes detection challenge leaderboard, we demonstrate that our approach is computationally lightweight, and can better capture safety-critical perception errors than a baseline approach.