论文标题
基于正常行为模型的风力涡轮机中的振动故障检测,没有功能工程
Vibration fault detection in wind turbines based on normal behaviour models without feature engineering
论文作者
论文摘要
大多数风力涡轮机对24/7进行远程监测,以允许对操作问题的早期发现并产生损坏。我们提出了一种新的故障检测方法,用于不需要任何功能工程的振动监控传动系统。我们的方法依靠一个简单的模型体系结构来实践中实现直接实现。我们建议将卷积自动编码器以自动化方式从半频谱中识别和提取最相关的功能,从而节省时间和精力。因此,从过去的测量值中学习了受监测组件的正常振动响应的光谱模型。我们证明该模型可以成功区分受损部件,并从其振动响应中检测出受损的发电机轴承和损坏的变速箱零件。使用商用风力涡轮机和测试钻机的测量结果,我们表明,可以在不通常的前期光谱特征定义的情况下进行风力涡轮机传动系统中的基于振动的故障检测。提出方法的另一个优点是,监测整个半频谱,而不是通常关注各个频率和谐波。
Most wind turbines are remotely monitored 24/7 to allow for an early detection of operation problems and developing damage. We present a new fault detection method for vibration-monitored drivetrains that does not require any feature engineering. Our method relies on a simple model architecture to enable a straightforward implementation in practice. We propose to apply convolutional autoencoders for identifying and extracting the most relevant features from the half spectrum in an automated manner, saving time and effort. Thereby, a spectral model of the normal vibration response is learnt for the monitored component from past measurements. We demonstrate that the model can successfully distinguish damaged from healthy components and detect a damaged generator bearing and damaged gearbox parts from their vibration responses. Using measurements from commercial wind turbines and a test rig, we show that vibration-based fault detection in wind turbine drivetrains can be performed without the usual upfront definition of spectral features. Another advantage of the presented method is that the entire half spectrum is monitored instead of the usual focus on monitoring individual frequencies and harmonics.