论文标题

深层的异质网络

Deep Generation of Heterogeneous Networks

论文作者

Ling, Chen, Yang, Carl, Zhao, Liang

论文摘要

异质图是无处不在的数据结构,可以固有地捕获对象之间的多模式和多模式的相互作用。近年来,关于将异质图编码为潜在表示形式的研究迅速增加。但是,它的反向过程,即如何从基础表示和分布中构造异质图,这是由于在1)对局部异质语义分布建模的几个挑战而没有得到很好的探索; 2)在本地语义上保留图形结构的分布; 3)表征全局异质图分布。为了应对这些挑战,我们提出了一个新型的异质图生成框架(HGEN),该框架共同捕获异质图的语义,结构和全球分布。具体来说,我们提出了一个异构行走生成器,该发电机层次生成元路径及其路径实例。此外,开发了一种新型的异质图组装程序,可以以分层的方式采样并将生成的元路径实例(例如步行)结合到异质图中。已经进行了有关通过提出的生成过程保存异质图模式的理论分析。在多个现实世界和合成异质图数据集上进行了广泛的实验,证明了所提出的HGEN在生成逼真的异质图中的有效性。

Heterogeneous graphs are ubiquitous data structures that can inherently capture multi-type and multi-modal interactions between objects. In recent years, research on encoding heterogeneous graph into latent representations have enjoyed a rapid increase. However, its reverse process, namely how to construct heterogeneous graphs from underlying representations and distributions have not been well explored due to several challenges in 1) modeling the local heterogeneous semantic distribution; 2) preserving the graph-structured distributions over the local semantics; and 3) characterizing the global heterogeneous graph distributions. To address these challenges, we propose a novel framework for heterogeneous graph generation (HGEN) that jointly captures the semantic, structural, and global distributions of heterogeneous graphs. Specifically, we propose a heterogeneous walk generator that hierarchically generates meta-paths and their path instances. In addition, a novel heterogeneous graph assembler is developed that can sample and combine the generated meta-path instances (e.g., walks) into heterogeneous graphs in a stratified manner. Theoretical analysis on the preservation of heterogeneous graph patterns by the proposed generation process has been performed. Extensive experiments on multiple real-world and synthetic heterogeneous graph datasets demonstrate the effectiveness of the proposed HGEN in generating realistic heterogeneous graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源