论文标题
三角形网格的分段常数函数的总广义变化,并在成像中应用
Total Generalized Variation for Piecewise Constant Functions on Triangular Meshes with Applications in Imaging
论文作者
论文摘要
我们提出了一个新的离散概念,用于总体变异(TGV),该概念最初是为了减少经典总变异(TV)正则化的阶梯效应,在图像降低问题中的阶梯效应。我们描述了三角形网格上的分段常数函数的离散,二阶TGV,从而使TGV函数可应用于比像素图像更通用的数据结构,尤其是在有限元离散的背景下。特别注意TGV函数内核的描述,在连续的环境中,该函数由线性多项式组成。我们讨论了如何使用三角形网格上的分段常数函数来利用这种内核结构。数值实验包括在非标准网格上定义的图像的降解和介入问题,包括来自3D扫描仪的数据。
We propose a novel discrete concept for the total generalized variation (TGV), which has originally been derived to reduce the staircasing effect in classical total variation (TV) regularization, in image denoising problems. We describe discrete, second-order TGV for piecewise constant functions on triangular meshes, thus allowing the TGV functional to be applied to more general data structures than pixel images, and in particular in the context of finite element discretizations. Particular attention is given to the description of the kernel of the TGV functional, which, in the continuous setting, consists of linear polynomials. We discuss how to take advantage of this kernel structure using piecewise constant functions on triangular meshes. Numerical experiments include denoising and inpainting problems for images defined on non-standard grids, including data from a 3D scanner.