论文标题

数据驱动的减少订单模型使用不变叶,流形和自动编码器

Data-driven reduced order models using invariant foliations, manifolds and autoencoders

论文作者

Szalai, Robert

论文摘要

本文探讨了如何从物理系统中识别减少的订单模型(ROM)。 ROM捕获了观察到的动力学的不变子集。我们发现,物理系统可以通过多种方式与数学模型相关:不变叶,不变的歧管,自动编码器和无方程模型。识别不变的歧管和无方程式模型需要对系统进行闭环操纵。不变叶子和自动编码器也可以使用离线数据。只有不变的叶子和不变的歧管才能识别ROM,其余的识别完整的模型。因此,从现有数据中识别ROM的常见情况只能使用不变叶来实现。 寻找不变的叶面需要近似高维函数。为了进行函数近似,我们使用具有压缩张量系数的多项式,其复杂性随尺寸的增加而线性增加。不变的歧管也可以作为叶的固定叶。这只需要我们解决不变歧管的小社区中的叶面,这极大地简化了过程。将不变的叶子与相应的不变歧管相结合提供了准确的ROM。在机械系统中典型的焦点类型平衡的情况下,我们分析了ROM。由不变叶子或不变的歧管定义的非线性坐标系扭曲了瞬时频率和阻尼比,我们纠正了。通过示例,我们说明了不变叶和歧管的计算,同时表明,在相同条件下,Koopman eigenfunctions和自动编码器无法捕获准确的ROM。

This paper explores how to identify a reduced order model (ROM) from a physical system. A ROM captures an invariant subset of the observed dynamics. We find that there are four ways a physical system can be related to a mathematical model: invariant foliations, invariant manifolds, autoencoders and equation-free models. Identification of invariant manifolds and equation-free models require closed-loop manipulation of the system. Invariant foliations and autoencoders can also use off-line data. Only invariant foliations and invariant manifolds can identify ROMs, the rest identify complete models. Therefore, the common case of identifying a ROM from existing data can only be achieved using invariant foliations. Finding an invariant foliation requires approximating high-dimensional functions. For function approximation, we use polynomials with compressed tensor coefficients, whose complexity increases linearly with increasing dimensions. An invariant manifold can also be found as the fixed leaf of a foliation. This only requires us to resolve the foliation in a small neighbourhood of the invariant manifold, which greatly simplifies the process. Combining an invariant foliation with the corresponding invariant manifold provides an accurate ROM. We analyse the ROM in case of a focus type equilibrium, typical in mechanical systems. The nonlinear coordinate system defined by the invariant foliation or the invariant manifold distorts instantaneous frequencies and damping ratios, which we correct. Through examples we illustrate the calculation of invariant foliations and manifolds, and at the same time show that Koopman eigenfunctions and autoencoders fail to capture accurate ROMs under the same conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源