论文标题
磁化超新星:复杂3D模型的核合成分析
Magnetorotational supernovae: A nucleosynthetic analysis of sophisticated 3D models
论文作者
论文摘要
磁化型超新星是一种罕见的核心偏转超新星,其中磁场和旋转在爆炸动力学中起着核心作用。我们介绍了最新的中微子-MHD超新星模型的后加工核合成,该模型跟随后爆炸后的演变几秒钟。我们发现三种不同的动力学机制来产生重型R过程:i)核心反弹后立即迅速弹出物质,ii)由于ProtoneutronStar的重新配置,在后期弹出的中子富含物质,iii)少量质量弹出,少量的质量在射流中心的高entropies中弹出。我们研究了总弹出产量,包括$^{26} $ al,$^{44} $ ti,$^{56} $ ni和$^{60} $ fe。获得的$^{56} $ ni Masses在$ 0.01-1 \,\ Mathrm {m_ \ odot} $之间变化。后者的最大值与Hypernova观测值兼容。此外,我们所有的模型都合成Zn质量,与旧金属贫困星的观察一致。我们计算简化的光曲线,以研究我们的模型是否可以作为超小型超新星的候选者。仅考虑到核加热而获得的峰值发光度达到几个$ \ sim 10^{43} \,\ mathrm {erg {erg \,s^{ - 1}} $。在某些条件下,我们发现$^{66} $ ni衰减链的重大影响可以将峰值发光度提高到$ \ sim 38 \%$,与仅包括$^{56} $ ni衰减链的型号相比。这项工作加强了理论证据,表明磁化型超新星在理解高诺夫,超小超新星的发生以及重元素的合成中的关键作用。
Magnetorotational supernovae are a rare type of core-collapse supernovae where the magnetic field and rotation play a central role in the dynamics of the explosion. We present the post-processed nucleosynthesis of state-of-the-art neutrino-MHD supernova models that follow the post explosion evolution for few seconds. We find three different dynamical mechanisms to produce heavy r-process elements: i) a prompt ejection of matter right after core bounce, ii) neutron-rich matter that is ejected at late times due to a reconfiguration of the protoneutronstar shape, iii) small amount of mass ejected with high entropies in the center of the jet. We investigate total ejecta yields, including the ones of unstable nuclei such as $^{26}$Al, $^{44}$Ti, $^{56}$Ni, and $^{60}$Fe. The obtained $^{56}$Ni masses vary between $0.01 - 1\,\mathrm{M_\odot}$. The latter maximum is compatible with hypernova observations. Furthermore, all of our models synthesize Zn masses in agreement with observations of old metal-poor stars. We calculate simplified light curves to investigate whether our models can be candidates for superluminous supernovae. The peak luminosities obtained from taking into account only nuclear heating reach up to a few $\sim 10^{43} \,\mathrm{erg\,s^{-1}}$. Under certain conditions, we find a significant impact of the $^{66}$Ni decay chain that can raise the peak luminosity up to $\sim 38\%$ compared to models including only the $^{56}$Ni decay chain. This work reinforces the theoretical evidence on the critical role of magnetorotational supernovae to understand the occurrence of hypernovae, superluminous supernovae, and the synthesis of heavy elements.