论文标题
同质笛卡尔在外侧类别中
Homotopy cartesian squares in extriangulated categories
论文作者
论文摘要
令$(\ Mathcal {C},\ Mathbb {E},\ Mathfrak {S})$为外部类别。如果在$ \ Mathcal {C} $中组成了两个换向的正方形,则如果两个合理的正方形是同质的笛卡尔,那么它们的构图也是同质的笛卡尔。这涵盖了Mac Lane(1998)的Abelian类别的结果,以及Christensen和Frankland(2022)的三角类别的结果。
Let $(\mathcal{C},\mathbb{E},\mathfrak{s})$ be an extriangulated category. Given a composition of two commutative squares in $\mathcal{C}$, if two commutative squares are homotopy cartesian, then their composition is also a homotopy cartesian. This covers the result by Mac Lane (1998) for abelian categories and the result by Christensen and Frankland (2022) for triangulated categories.