论文标题
推荐系统的基于合成数据的模拟器:调查
Synthetic Data-Based Simulators for Recommender Systems: A Survey
论文作者
论文摘要
这项调查旨在全面概述用户与推荐系统之间的相互作用和M&S应用程序之间的建模和模拟(M&S)领域的最新趋势,以改善工业推荐引擎的性能。我们从实施模拟器的框架开发的动机开始,以及它们用于培训和测试不同类型(包括强化学习)的推荐系统的使用。此外,我们根据现有模拟器的功能,认可和工业有效性提供了新的一致分类,并总结了研究文献中发现的模拟器。除其他事项外,我们还讨论了模拟器的构建块:合成数据(用户,项目,用户项目响应)的生成方法,用于实验分析的方法,用于模拟质量评估的方法和数据集(包括监视可能的模拟对现实差距的方法)以及实验模拟结果的汇总方法。最后,这项调查考虑了该领域的新主题和开放问题。
This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation (M&S) of interactions between users and recommender systems and applications of the M&S to the performance improvement of industrial recommender engines. We start with the motivation behind the development of frameworks implementing the simulations -- simulators -- and the usage of them for training and testing recommender systems of different types (including Reinforcement Learning ones). Furthermore, we provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness and moreover make a summary of the simulators found in the research literature. Besides other things, we discuss the building blocks of simulators: methods for synthetic data (user, item, user-item responses) generation, methods for what-if experimental analysis, methods and datasets used for simulation quality evaluation (including the methods that monitor and/or close possible simulation-to-reality gaps), and methods for summarization of experimental simulation results. Finally, this survey considers emerging topics and open problems in the field.