论文标题
从心理启发的,无监督的GUI图像中GUI小部件的无监督推理
Psychologically-Inspired, Unsupervised Inference of Perceptual Groups of GUI Widgets from GUI Images
论文作者
论文摘要
图形用户界面(GUI)不仅是单个和无关的小部件的集合,而且还通过各种视觉提示将离散的小部件分组为组,从而形成了诸如标签,菜单,卡或列表之类的高阶感知单元。自动将GUI分为感知组小部件的能力构成了视觉智能的基本组成部分,以使GUI设计,实现和自动化任务自动化。尽管人类可以以高度可靠的方式将GUI分配到有意义的窗口小部件的知觉群体中,但感知分组仍然是计算方法的开放挑战。现有方法依赖于临时启发式方法或受监督的机器学习,取决于特定的GUI实现和运行时信息。心理学和生物视觉的研究已经制定了一组原理(即,感知理论),这些原理描述了人类在视觉场景中如何基于连接性,相似性,相似性,接近性和连续性等视觉线索中的元素。这些原则是独立于领域的,并且已被从业人员广泛采用,以在GUI上构造内容,以改善美学愉悦和可用性。受这些原则的启发,我们提出了一种基于图像的新型方法,用于推断GUI小部件的感知组。我们的方法仅需要GUI像素图像,独立于GUI实施,并且不需要任何培训数据。从772个移动应用程序和20个UI设计模型收集的1,091个GUI的数据集上的评估表明,我们的方法的表现大大优于基于最新的临时启发式基线。我们的感知分组方法创造了改善与UI相关的软件工程任务的机会。
Graphical User Interface (GUI) is not merely a collection of individual and unrelated widgets, but rather partitions discrete widgets into groups by various visual cues, thus forming higher-order perceptual units such as tab, menu, card or list. The ability to automatically segment a GUI into perceptual groups of widgets constitutes a fundamental component of visual intelligence to automate GUI design, implementation and automation tasks. Although humans can partition a GUI into meaningful perceptual groups of widgets in a highly reliable way, perceptual grouping is still an open challenge for computational approaches. Existing methods rely on ad-hoc heuristics or supervised machine learning that is dependent on specific GUI implementations and runtime information. Research in psychology and biological vision has formulated a set of principles (i.e., Gestalt theory of perception) that describe how humans group elements in visual scenes based on visual cues like connectivity, similarity, proximity and continuity. These principles are domain-independent and have been widely adopted by practitioners to structure content on GUIs to improve aesthetic pleasant and usability. Inspired by these principles, we present a novel unsupervised image-based method for inferring perceptual groups of GUI widgets. Our method requires only GUI pixel images, is independent of GUI implementation, and does not require any training data. The evaluation on a dataset of 1,091 GUIs collected from 772 mobile apps and 20 UI design mockups shows that our method significantly outperforms the state-of-the-art ad-hoc heuristics-based baseline. Our perceptual grouping method creates the opportunities for improving UI-related software engineering tasks.