论文标题
光环形成期间从暗物质转移到气体
Spin transfer from dark matter to gas during halo formation
论文作者
论文摘要
在杂构密度场中,通常认为弥漫性气体和无碰撞的冷暗物质(DM)充分混合,以至于两个组件都经历了相同的潮汐扭矩。但是,宇宙学模拟中的光环始终以气体中较高的特异性角动量(SAM)最终形成,即使在没有辐射冷却和星系形成物理的模拟中也是如此。我们通过分析来自Surfs Suite的非辐射宇宙学仿真中的$ 50,000固定良好的光环($ 50,000)的气体和DM的自旋分布来完善结果。平均而言,光环气体的SAM $ \ sim $ 40 \%\%以上的DM。可以将其固定在内部光环中的多余AM($ <$ 50 \%的病毒半径),与气体中更连贯的旋转模式相似。我们通过一系列塌陷的椭圆形顶帽的控制模拟来揭示该AM差异的领先驱动器,其中气体和DM最初混合在一起。这些运行表明,加压内气壳的崩溃较慢,导致DM椭圆形在气体椭球前旋转。出现的扭矩通常会从DM转移到气体。通过此模式传输的AM量取决于初始旋转,初始轴比和塌陷因子。这些量可以组合成单个无量纲参数,该参数可鲁棒地预测椭圆形塌陷的AM转移。这种简单的模型可以定量解释在更复杂的非辐射宇宙学模拟中发现的气体的平均AM过量。
In the protogalactic density field, diffuse gas and collision-less cold dark matter (DM) are often assumed sufficiently mixed that both components experience identical tidal torques. However, haloes in cosmological simulations consistently end up with a higher specific angular momentum (sAM) in gas, even in simulations without radiative cooling and galaxy formation physics. We refine this result by analysing the spin distributions of gas and DM in $\sim$50,000 well-resolved haloes in a non-radiative cosmological simulation from the SURFS suite. The sAM of the halo gas on average ends up $\sim$40\% above that of the DM. This can be pinned down to an excess AM in the inner halo ($<$50\% virial radius), paralleled by a more coherent rotation pattern in the gas. We uncover the leading driver for this AM difference through a series of control simulations of a collapsing ellipsoidal top-hat, where gas and DM are initially well mixed. These runs reveal that the pressurised inner gas shells collapse more slowly, causing the DM ellipsoid to spin ahead of the gas ellipsoid. The arising torque generally transfers AM from the DM to the gas. The amount of AM transferred via this mode depends on the initial spin, the initial axes ratios and the collapse factor. These quantities can be combined in a single dimensionless parameter, which robustly predicts the AM transfer of the ellipsoidal collapse. This simplistic model can quantitatively explain the average AM excess of the gas found in the more complex non-radiative cosmological simulation.