论文标题
上下文挤压和兴奋,以有效的几个图像分类
Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification
论文作者
论文摘要
近年来,以用户为中心的应用程序的增长,需要在低数据制度中跨任务进行有效的知识转移。一个示例是个性化,通过学习少量的属于特定用户的标记数据,可以调整一个预处理的系统。在低计算复杂性下,这种设置需要高精度,因此,准确性的帕累托前沿与适应性成本起着至关重要的作用。在本文中,我们将在几个摄像图像分类设置中推动此帕累托边境,并具有关键贡献:一个新的自适应块,称为上下文挤压和兴奋(案例),该块在新任务上调整了预告片的神经网络,以通过用户数据的单个前向通行证(上下文)来显着提高性能。我们使用元训练的情况块有条件地调整网络的主体和微调例程以适应线性头,并定义一种称为大写的方法。大写在VTAB+MD的26个数据集和充满挑战的现实世界个性化基准(Orbit)上,相对于元学习者达到了新的最先进的精度,从而通过领先的微调方法缩小了差距,并获得了较低的适应性成本的好处。
Recent years have seen a growth in user-centric applications that require effective knowledge transfer across tasks in the low-data regime. An example is personalization, where a pretrained system is adapted by learning on small amounts of labeled data belonging to a specific user. This setting requires high accuracy under low computational complexity, therefore the Pareto frontier of accuracy vs. adaptation cost plays a crucial role. In this paper we push this Pareto frontier in the few-shot image classification setting with a key contribution: a new adaptive block called Contextual Squeeze-and-Excitation (CaSE) that adjusts a pretrained neural network on a new task to significantly improve performance with a single forward pass of the user data (context). We use meta-trained CaSE blocks to conditionally adapt the body of a network and a fine-tuning routine to adapt a linear head, defining a method called UpperCaSE. UpperCaSE achieves a new state-of-the-art accuracy relative to meta-learners on the 26 datasets of VTAB+MD and on a challenging real-world personalization benchmark (ORBIT), narrowing the gap with leading fine-tuning methods with the benefit of orders of magnitude lower adaptation cost.