论文标题
非线性Schrodinger方程的扰动理论
Perturbation theory for nonlinear Schrodinger equations
论文作者
论文摘要
将总pitaevskii非线性schrodinger方程的非线性项视为线性问题的孤立离散特征值的扰动。事实证明,当代表非线性项的强度的参数在绝对值中的强度小于阈值时,并且它为非线性schrodinger方程提供了固定的解决方案时,该功率序列是收敛的。
Treating the nonlinear term of the Gross-Pitaevskii nonlinear Schrodinger equation as a perturbation of an isolated discrete eigenvalue of the linear problem one obtains a Rayleigh-Schrodinger power series. This power series is proved to be convergent when the parameter representing the intensity of the nonlinear term is less in absolute value than a threshold value, and it gives a stationary solution to the nonlinear Schrodinger equation.