论文标题
相关性,远程纠缠和远程基塔夫链中的动态
Correlations, long-range entanglement and dynamics in long-range Kitaev chains
论文作者
论文摘要
远程互动表现出令人惊讶的功能,到目前为止探索的功能较少。在这里,我们研究了具有远距离跳和配对的一维费米子链,我们讨论了与远程纠缠的存在相关的一些一般特征。特别是,在确定相关函数的代数衰减之后,我们证明存在远程量子相互信息,如果衰减的指数不大于一个。此外,我们表明,短距离和远程区域之间的量子猝灭触发的时间演化可以以动态量子相变的而无需越过任何相边界而进行特征。我们还表明,绝热动态是由量子级临界点处拓扑长度尺度的差异决定的,从而阐明了对远程系统的kibble-zurek机制的侵犯。
Long-range interactions exhibit surprising features which have been less explored so far. Here, studying a one-dimensional fermionic chain with long-range hopping and pairing, we discuss some general features associated to the presence of long-range entanglement. In particular, after determining the algebraic decays of the correlation functions, we prove that a long-range quantum mutual information exists if the exponent of the decay is not larger than one. Moreover, we show that the time evolution triggered by a quantum quench between short-range and long-range regions, can be characterized by dynamical quantum phase transitions without crossing any phase boundary. We show, also, that the adiabatic dynamics is dictated by the divergence of a topological length scale at the quantum critical point, clarifying the violation of the Kibble-Zurek mechanism for long-range systems.