论文标题
具有外源输入的小波矩的广义方法:用于分析GNSS位置时间序列的快速方法
The Generalized Method of Wavelet Moments with Exogenous Inputs: a Fast Approach for the Analysis of GNSS Position Time Series
论文作者
论文摘要
全球导航卫星系统(GNSS)每日位置时间序列通常被描述为随机过程和地球物理信号的总和,允许研究全球和局部地球动力学效应,例如板块构造,地震或地下水变化。在这项工作中,我们建议扩展小波矩(GMWM)的广义方法,以估计具有相关残差的线性模型的参数。该统计推断框架应用于GNSS每日位置时间序列数据,以估计功能(地球物理)和随机噪声模型。我们的方法称为GMWMX,X代表外抗变量:它是半参数,计算上有效且可扩展的。与标准方法(例如广泛使用的最大似然估计器(MLE))不同,我们的方法提供了统计保证,例如一致性和渐近正态性,而无需依赖强有力的参数假设。在高斯模型上,我们的结果表明,估计参数与使用MLE获得的参数相似。我们方法的计算性能具有重要的实际含义。实际上,对数千个GNS站的大型网络的参数的估计很快就变得越来越高。与标准方法相比,GMWMX的处理时间超过$ 1000 $倍,并允许在标准计算机上估计大规模问题。我们通过蒙特卡洛模拟来验证方法的性能,通过生成GNSS每日位置时间序列,缺少观察值,我们考虑了复合随机噪声模型,包括呈现远距离依赖性的过程,例如powerlaw或matérn过程。还使用来自美国东部地区的GNSS站的实时序列来说明我们方法的优势。
The Global Navigation Satellite System (GNSS) daily position time series are often described as the sum of stochastic processes and geophysical signals which allow studying global and local geodynamical effects such as plate tectonics, earthquakes, or ground water variations. In this work we propose to extend the Generalized Method of Wavelet Moments (GMWM) to estimate the parameters of linear models with correlated residuals. This statistical inferential framework is applied to GNSS daily position time series data to jointly estimate functional (geophysical) as well as stochastic noise models. Our method is called GMWMX, with X standing for eXogeneous variable: it is semi-parametric, computationally efficient and scalable. Unlike standard methods such as the widely used Maximum Likelihood Estimator (MLE), our methodology offers statistical guarantees, such as consistency and asymptotic normality, without relying on strong parametric assumptions. At the Gaussian model, our results show that the estimated parameters are similar to the ones obtained with the MLE. The computational performances of our approach has important practical implications. Indeed, the estimation of the parameters of large networks of thousands of GNSS stations quickly becomes computationally prohibitive. Compared to standard methods, the processing time of the GMWMX is over $1000$ times faster and allows the estimation of large scale problems within minutes on a standard computer. We validate the performances of our method via Monte-Carlo simulations by generating GNSS daily position time series with missing observations and we consider composite stochastic noise models including processes presenting long-range dependence such as power-law or Matérn processes. The advantages of our method are also illustrated using real time series from GNSS stations located in the Eastern part of the USA.