论文标题

重新考虑半监督体积医学图像分割的贝叶斯深度学习方法

Rethinking Bayesian Deep Learning Methods for Semi-Supervised Volumetric Medical Image Segmentation

论文作者

Wang, Jianfeng, Lukasiewicz, Thomas

论文摘要

最近,已经提出了几种半监督医学图像分割的贝叶斯深度学习方法。尽管他们在医疗基准上取得了令人鼓舞的结果,但仍然存在一些问题。首先,他们的整体体系结构属于判别模型,因此,在培训的早期阶段,他们仅使用标记的数据进行培训,这可能会使它们过于贴合标记的数据。其次,实际上,它们仅部分基于贝叶斯的深度学习,因为它们的整体体系结构不是在贝叶斯框架下设计的。但是,统一贝叶斯观点下的整体体系结构可以使体系结构具有严格的理论基础,以便架构的每个部分都可以具有明确的概率解释。因此,为了解决问题,我们提出了一种新的生成贝叶斯深度学习(GBDL)体系结构。 GBDL属于生成模型,其目标是估计输入医疗量及其相应标签的联合分布。估计联合分布隐式涉及数据的分布,因此在培训的早期阶段都可以使用标记和未标记的数据,从而减轻潜在的过度拟合问题。此外,GBDL是在贝叶斯框架下完全设计的,因此我们提供了其完整的贝叶斯配方,这为我们的建筑奠定了理论上的概率基础。广泛的实验表明,我们的GBDL在三个公共医疗数据集上的四个常用评估指标方面优于先前的最新方法。

Recently, several Bayesian deep learning methods have been proposed for semi-supervised medical image segmentation. Although they have achieved promising results on medical benchmarks, some problems are still existing. Firstly, their overall architectures belong to the discriminative models, and hence, in the early stage of training, they only use labeled data for training, which might make them overfit to the labeled data. Secondly, in fact, they are only partially based on Bayesian deep learning, as their overall architectures are not designed under the Bayesian framework. However, unifying the overall architecture under the Bayesian perspective can make the architecture have a rigorous theoretical basis, so that each part of the architecture can have a clear probabilistic interpretation. Therefore, to solve the problems, we propose a new generative Bayesian deep learning (GBDL) architecture. GBDL belongs to the generative models, whose target is to estimate the joint distribution of input medical volumes and their corresponding labels. Estimating the joint distribution implicitly involves the distribution of data, so both labeled and unlabeled data can be utilized in the early stage of training, which alleviates the potential overfitting problem. Besides, GBDL is completely designed under the Bayesian framework, and thus we give its full Bayesian formulation, which lays a theoretical probabilistic foundation for our architecture. Extensive experiments show that our GBDL outperforms previous state-of-the-art methods in terms of four commonly used evaluation indicators on three public medical datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源