论文标题

PHN:平行的异质网络,具有CTR预测的软门控

PHN: Parallel heterogeneous network with soft gating for CTR prediction

论文作者

Su, Ri, Hounye, Alphonse Houssou, Cao, Cong, Hou, Muzhou

论文摘要

点击率(CTR)预测任务是推荐系统中的基本任务。以前的CTR模型的大多数研究基于宽\和深层结构构建,并逐渐演变为具有不同模块的平行结构。但是,平行结构的简单积累会导致更高的结构复杂性和更长的训练时间。基于输出层的Sigmoid激活函数,训练过程中平行结构的线性添加激活值很容易使样品落入弱梯度间隔,从而导致弱梯度的现象,并降低训练的有效性。为此,本文提出了一个平行的异质网络(PHN)模型,该模型通过三种不同的相互作用分析方法构建具有并行结构的网络,并使用软选择门控(SSG)以具有不同结构的异质数据。最后,在网络中使用了与可训练参数的残留链接来减轻弱梯度现象的影响。此外,我们证明了PHN在大量比较实验中的有效性,并可视化模型在训练过程和结构中的性能。

The Click-though Rate (CTR) prediction task is a basic task in recommendation system. Most of the previous researches of CTR models built based on Wide \& deep structure and gradually evolved into parallel structures with different modules. However, the simple accumulation of parallel structures can lead to higher structural complexity and longer training time. Based on the Sigmoid activation function of output layer, the linear addition activation value of parallel structures in the training process is easy to make the samples fall into the weak gradient interval, resulting in the phenomenon of weak gradient, and reducing the effectiveness of training. To this end, this paper proposes a Parallel Heterogeneous Network (PHN) model, which constructs a network with parallel structure through three different interaction analysis methods, and uses Soft Selection Gating (SSG) to feature heterogeneous data with different structure. Finally, residual link with trainable parameters are used in the network to mitigate the influence of weak gradient phenomenon. Furthermore, we demonstrate the effectiveness of PHN in a large number of comparative experiments, and visualize the performance of the model in training process and structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源