论文标题

量化Weyl代数,双中央属性和$ u_q(\ Mathfrak {gl} _n)$的新的第一个基本定理

Quantized Weyl algebras, the double centralizer property, and a new First Fundamental Theorem for $U_q(\mathfrak{gl}_n)$

论文作者

Letzter, Gail, Sahi, Siddhartha, Salmasian, Hadi

论文摘要

令$ \ MATHCAL P:= \ MATHCAL P_ {M \ times n} $表示$ M \ times n $矩阵的量化坐标环,配备了量化的包裹代数$ _Q(\ Mathfrak {\ mathfrak {gl} _m)$ u_q($ u_q($ u_q)的自然作用。令$ \ mathcal l $和$ \ Mathcal r $表示$ u_q(\ Mathfrak {gl} _m)$和$ u_q(\ Mathfrak {gl} _n)$ in $ \ mathrm {Endrm {end}(分别分别)。我们定义$ \ m artrm {end}(\ Mathcal p)$内部多项式差异操作员的代数的$ q $ - 单词,此后用$ \ nathcal {pd {pd} $表示,我们证明了$ \ mathcal l \ cap \ cap \ cap \ cap \ mathcal cop {pd} \ Mathcal {pd} $是$ \ Mathcal {pd} $内部的共同集中器。使用它,我们为$ u_q(\ mathfrak {gl} _n)$建立了不变理论的新的第一个基本定理。我们还根据$ u_q(\ mathfrak {gl} _m)$ u_q(\ mathfrak {gl} _m)$ and $ u_q(\ u_q(\ mathfrak {\ mathfrak {gl gl} _n)$,我们还用$ q $ - 确定的$ q $确定剂来计算与$ \ mathcal {pd} $的发电机。

Let $\mathcal P:=\mathcal P_{m\times n}$ denote the quantized coordinate ring of the space of $m\times n$ matrices, equipped with natural actions of the quantized enveloping algebras $U_q(\mathfrak{gl}_m)$ and $U_q(\mathfrak{gl}_n)$. Let $\mathcal L$ and $\mathcal R$ denote the images of $U_q(\mathfrak{gl}_m)$ and $U_q(\mathfrak{gl}_n)$ in $\mathrm{End}(\mathcal P)$, respectively. We define a $q$-analogue of the algebra of polynomial-coefficient differential operators inside $\mathrm{End}(\mathcal P)$, henceforth denoted by $\mathcal{PD}$, and we prove that $\mathcal L\cap \mathcal{PD}$ and $\mathcal{R}\cap \mathcal{PD}$ are mutual centralizers inside $\mathcal{PD}$. Using this, we establish a new First Fundamental Theorem of invariant theory for $U_q(\mathfrak{gl}_n)$. We also compute explicit formulas in terms of $q$-determinants for generators of the intersections with $\mathcal{PD}$ of the images of the Cartan subalgebras of $U_q(\mathfrak{gl}_m)$ and $U_q(\mathfrak{gl}_n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源