论文标题
使用任务对应关系一致性同时骨和阴影分割网络
Simultaneous Bone and Shadow Segmentation Network using Task Correspondence Consistency
论文作者
论文摘要
分割骨表面和相应的声阴影是超声(美国)引导的骨科手术中的基本任务。但是,由于美国图像中的骨表面响应最小和模糊的骨表面响应,跨照明差异,成像伪像和低信噪比,这些任务是具有挑战性的。值得注意的是,骨阴影是由软组织和骨表面之间的显着声阻抗不匹配引起的。为了利用这些高度相关的任务之间的这些相互信息,我们提出了一个单一端到端网络,具有共享的基于变压器的编码器和任务独立的解码器,用于同时骨骼和阴影分割。为了共享互补的功能,我们提出了一个跨任务特征传输块,该块学会将有意义的特征从阴影分割的解码器传输到骨骼分割的解码器,反之亦然。我们还引入了对应关系一致性损失,该损失确保网络利用骨表面及其相应阴影之间的相互依赖性来完善分割。针对专家注释的验证表明,该方法的表现优于骨表面和阴影分割的先前最新。
Segmenting both bone surface and the corresponding acoustic shadow are fundamental tasks in ultrasound (US) guided orthopedic procedures. However, these tasks are challenging due to minimal and blurred bone surface response in US images, cross-machine discrepancy, imaging artifacts, and low signal-to-noise ratio. Notably, bone shadows are caused by a significant acoustic impedance mismatch between the soft tissue and bone surfaces. To leverage this mutual information between these highly related tasks, we propose a single end-to-end network with a shared transformer-based encoder and task independent decoders for simultaneous bone and shadow segmentation. To share complementary features, we propose a cross task feature transfer block which learns to transfer meaningful features from decoder of shadow segmentation to that of bone segmentation and vice-versa. We also introduce a correspondence consistency loss which makes sure that network utilizes the inter-dependency between the bone surface and its corresponding shadow to refine the segmentation. Validation against expert annotations shows that the method outperforms the previous state-of-the-art for both bone surface and shadow segmentation.