论文标题
环反卷积显微镜:利用对称性以有效地在空间上变化的像差校正
Ring deconvolution microscopy: exploiting symmetry for efficient spatially varying aberration correction
论文作者
论文摘要
显微镜的计算像差校正最普遍的形式是反卷积。但是,反卷积依赖于以下假设:在整个视野中,点扩散函数是相同的。这个假设通常不足,但是空间变化的脱张技术通常需要不切实际的校准和计算。我们提出了一种新的成像管道,该管道利用对称性提供简单,快速的空间变差校正。我们的环反卷积显微镜(RDM)方法利用大多数显微镜和相机的旋转对称性,并且在侧向对称性的情况下自然延伸至板反卷积。我们正式得出用于图像恢复的理论和算法,并另外提出了基于SEIDEL系数作为快速替代方案的神经网络,以及将RDM扩展到盲人反volution。与标准的反向卷积和现有的显微镜模态范围内的标准反向卷积和现有变化的反卷积相比,我们显示出显着提高的速度和图像质量,包括微型显微镜,多色荧光显微镜,点扫描多模片纤维微观镜头和轻便荧光显微镜。我们的方法使每个应用中的每个应用都可以近乎各向异性的亚细胞分辨率。
The most ubiquitous form of computational aberration correction for microscopy is deconvolution. However, deconvolution relies on the assumption that the point spread function is the same across the entire field-of-view. This assumption is often inadequate, but space-variant deblurring techniques generally require impractical amounts of calibration and computation. We present a new imaging pipeline that leverages symmetry to provide simple and fast spatially-varying aberration correction. Our ring deconvolution microscopy (RDM) method leverages the rotational symmetry of most microscopes and cameras, and naturally extends to sheet deconvolution in the case of lateral symmetry. We formally derive theory and algorithms for image recovery and additionally propose a neural network based on Seidel coefficients as a fast alternative, as well as extension of RDM to blind deconvolution. We demonstrate significant improvements in speed and image quality as compared to standard deconvolution and existing spatially-varying deconvolution across a diverse range of microscope modalities, including miniature microscopy, multicolor fluorescence microscopy, point-scanning multimode fiber micro-endoscopy, and light-sheet fluorescence microscopy. Our approach enables near-isotropic, subcellular resolution in each of these applications.