论文标题
稀疏的双重下降:网络修剪会加剧过度拟合
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
论文作者
论文摘要
人们通常认为,修剪网络不仅会降低深网的计算成本,而且还可以通过降低模型容量来防止过度拟合。但是,我们的工作令人惊讶地发现,网络修剪有时甚至会加剧过度拟合。我们报告了一种意外的稀疏双下降现象,随着我们通过网络修剪增加模型稀疏性,测试性能首先变得更糟(由于过度拟合),然后变得更好(由于过度拟合过度),并且终于变得更糟(由于忘记了有用的信息)。尽管最近的研究集中在模型过度参数化方面,但他们未能意识到稀疏性也可能导致双重下降。在本文中,我们有三个主要贡献。首先,我们通过广泛的实验报告了新型的稀疏双重下降现象。其次,对于这种现象,我们提出了一种新颖的学习距离解释,即$ \ ell_ {2} $稀疏模型的学习距离(从初始化参数到最终参数)可能与稀疏的双重下降曲线很好地相关,并且比最小平面更好地反映了概括。第三,在稀疏的双重下降的背景下,彩票假设中的获胜票令人惊讶地并不总是赢。
People usually believe that network pruning not only reduces the computational cost of deep networks, but also prevents overfitting by decreasing model capacity. However, our work surprisingly discovers that network pruning sometimes even aggravates overfitting. We report an unexpected sparse double descent phenomenon that, as we increase model sparsity via network pruning, test performance first gets worse (due to overfitting), then gets better (due to relieved overfitting), and gets worse at last (due to forgetting useful information). While recent studies focused on the deep double descent with respect to model overparameterization, they failed to recognize that sparsity may also cause double descent. In this paper, we have three main contributions. First, we report the novel sparse double descent phenomenon through extensive experiments. Second, for this phenomenon, we propose a novel learning distance interpretation that the curve of $\ell_{2}$ learning distance of sparse models (from initialized parameters to final parameters) may correlate with the sparse double descent curve well and reflect generalization better than minima flatness. Third, in the context of sparse double descent, a winning ticket in the lottery ticket hypothesis surprisingly may not always win.