论文标题

具有高维稀疏普通微分方程的非高斯数据的动力建模

Dynamical Modeling for non-Gaussian Data with High-dimensional Sparse Ordinary Differential Equations

论文作者

Nanshan, Muye, Zhang, Nan, Xun, Xiaolei, Cao, Jiguo

论文摘要

普通的微分方程(ODE)已被广泛用于建模动态复杂系统。对于较大方程数量较大的高维ode模型,估计ode参数并识别ode模型的稀疏结构仍然具有挑战性。大多数现有的方法利用了最不平等的方法,仅适用于高斯观察。但是,由于离散数据在应用程序中无处不在,因此为非高斯观察开发动态建模至关重要。为高维线性ode系统中的参数估计和稀疏结构识别而开发了新的方法和算法。首先,提出了高维广义分析方法作为一种基于可能性的方法,具有ODE保真度和稀疏性诱导正则化,以及基于参数级联的有效计算。其次,两步搭配方法的两个版本通过合并迭代重量的最小二乘技术将其扩展到非高斯设置。模拟表明,分析过程在潜在过程和衍生拟合和ode参数估计中具有出色的性能,而两步搭配方法在识别ode系统的稀疏结构方面表现出色。通过分析Google趋势,股票市场和酵母细胞周期研究的三个真实数据集,还证明了所提出方法的有用性。

Ordinary differential equations (ODE) have been widely used for modeling dynamical complex systems. For high-dimensional ODE models where the number of differential equations is large, it remains challenging to estimate the ODE parameters and to identify the sparse structure of the ODE models. Most existing methods exploit the least-square based approach and are only applicable to Gaussian observations. However, as discrete data are ubiquitous in applications, it is of practical importance to develop dynamic modeling for non-Gaussian observations. New methods and algorithms are developed for both parameter estimation and sparse structure identification in high-dimensional linear ODE systems. First, the high-dimensional generalized profiling method is proposed as a likelihood-based approach with ODE fidelity and sparsity-inducing regularization, along with efficient computation based on parameter cascading. Second, two versions of the two-step collocation methods are extended to the non-Gaussian set-up by incorporating the iteratively reweighted least squares technique. Simulations show that the profiling procedure has excellent performance in latent process and derivative fitting and ODE parameter estimation, while the two-step collocation approach excels in identifying the sparse structure of the ODE system. The usefulness of the proposed methods is also demonstrated by analyzing three real datasets from Google trends, stock market sectors, and yeast cell cycle studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源