论文标题

复合材料的线性椭圆系统的梯度类型估计值

Gradient type estimates for linear elliptic systems from composite materials

论文作者

Kim, Youchan, Shin, Pilsoo

论文摘要

在本文中,我们考虑了来自复合材料的线性椭圆系统,在该复合材料中,该系数取决于形状,并且可能在子区域之间存在不连续性。我们得出了与弱解的梯度相关的函数,该函数不仅是局部分段的Hölder连续的,而且是局部Hölder连续的。弱解的梯度可以通过该派生的函数来估算,我们还证明了局部分段梯度Hölder连续性,这是通过先前结果获得的。

In this paper, we consider linear elliptic systems from composite materials where the coefficients depend on the shape and might have the discontinuity between the subregions. We derive a function which is related to the gradient of the weak solutions and which is not only locally piecewise Hölder continuous but locally Hölder continuous. The gradient of the weak solutions can be estimated by this derived function and we also prove local piecewise gradient Hölder continuity which was obtained by the previous results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源