论文标题

群集的调度和通信管道,用于无线联合学习的有效资源管理

Clustered Scheduling and Communication Pipelining For Efficient Resource Management Of Wireless Federated Learning

论文作者

Keçeci, Cihat, Shaqfeh, Mohammad, Al-Qahtani, Fawaz, Ismail, Muhammad, Serpedin, Erchin

论文摘要

本文建议使用通信管道来提高移动边缘计算应用中联合学习的无线频谱利用效率和收敛速度。由于无线子渠道有限,因此在联合学习算法的每种迭代中都计划了总客户端的一个子集。另一方面,计划的客户等待最慢的客户端完成计算。我们建议首先根据客户在计算联合学习模型的本地梯度所需的时间将客户群聚集。然后,我们安排了来自所有集群的客户的混合,以管道的方式发送其本地更新。这样,更多的客户可以参与每次迭代,而不仅仅是等待较慢的客户完成计算的速度。虽然单个迭代的持续时间没有改变,但提出的方法可以显着减少达到目标准确性所需的迭代次数。我们为在不同的设置下提供了最佳客户端聚类的通用公式,并在分析上得出了一种有效的算法来获得最佳解决方案。我们还提供了数值结果,以证明针对不同数据集和深度学习体系结构的建议方法的收益。

This paper proposes using communication pipelining to enhance the wireless spectrum utilization efficiency and convergence speed of federated learning in mobile edge computing applications. Due to limited wireless sub-channels, a subset of the total clients is scheduled in each iteration of federated learning algorithms. On the other hand, the scheduled clients wait for the slowest client to finish its computation. We propose to first cluster the clients based on the time they need per iteration to compute the local gradients of the federated learning model. Then, we schedule a mixture of clients from all clusters to send their local updates in a pipelined manner. In this way, instead of just waiting for the slower clients to finish their computation, more clients can participate in each iteration. While the time duration of a single iteration does not change, the proposed method can significantly reduce the number of required iterations to achieve a target accuracy. We provide a generic formulation for optimal client clustering under different settings, and we analytically derive an efficient algorithm for obtaining the optimal solution. We also provide numerical results to demonstrate the gains of the proposed method for different datasets and deep learning architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源