论文标题
Recbole 2.0:迈向更新的推荐库
RecBole 2.0: Towards a More Up-to-Date Recommendation Library
论文作者
论文摘要
为了支持推荐系统最新进展的研究,本文介绍了一个扩展的推荐库,该库由八个包装,用于最新的主题和架构。首先,从数据的角度来看,我们考虑了与数据问题有关的三个重要主题(即稀疏,偏见和分配转移),并相应地开发了五个包裹:元学习,数据增强,偏见,偏见,公平性,公平性和跨域建议。此外,从模型的角度来看,我们分别为基于变压器和图形神经网络(GNN)的模型开发了两个基准测试包。所有的软件包(由65个新型号组成)都是基于普遍的建议框架Recbole开发的,以确保实现和接口均已统一。对于每个软件包,我们提供来自数据加载,实验设置,评估和算法实现的完整实现。该图书馆提供了一个宝贵的资源,以促进推荐系统的最新研究。该项目在链接上发布:https://github.com/rucaibox/recbole2.0。
In order to support the study of recent advances in recommender systems, this paper presents an extended recommendation library consisting of eight packages for up-to-date topics and architectures. First of all, from a data perspective, we consider three important topics related to data issues (i.e., sparsity, bias and distribution shift), and develop five packages accordingly: meta-learning, data augmentation, debiasing, fairness and cross-domain recommendation. Furthermore, from a model perspective, we develop two benchmarking packages for Transformer-based and graph neural network (GNN)-based models, respectively. All the packages (consisting of 65 new models) are developed based on a popular recommendation framework RecBole, ensuring that both the implementation and interface are unified. For each package, we provide complete implementations from data loading, experimental setup, evaluation and algorithm implementation. This library provides a valuable resource to facilitate the up-to-date research in recommender systems. The project is released at the link: https://github.com/RUCAIBox/RecBole2.0.