论文标题

对对抗性鲁棒性的快速和可靠评估,并最小利润攻击

Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack

论文作者

Gao, Ruize, Wang, Jiongxiao, Zhou, Kaiwen, Liu, Feng, Xie, Binghui, Niu, Gang, Han, Bo, Cheng, James

论文摘要

当可用的计算资源可用时,AutoAttack(AA)是评估对抗性鲁棒性的最可靠方法。但是,高计算成本(例如,比项目梯度下降攻击的100倍)使AA对于具有有限计算资源的从业者来说是不可行的,并且也阻碍了AA在对抗培训中的应用(AT)。在本文中,我们提出了一种新颖的方法,即最小利润率(MM)攻击,以快速可靠地评估对抗性鲁棒性。与AA相比,我们的方法可实现可比的性能,但在广泛的实验中仅占计算时间的3%。我们方法的可靠性在于,我们使用两个目标之间的边缘来评估对抗性示例的质量,这些目标可以精确地识别最对抗性的示例。我们方法的计算效率在于有效的顺序目标排名选择(星星)方法,以确保MM攻击的成本与类数无关。 MM攻击开辟了一种评估对抗性鲁棒性的新方法,并提供了一种可行且可靠的方式来生成高质量的对抗示例。

The AutoAttack (AA) has been the most reliable method to evaluate adversarial robustness when considerable computational resources are available. However, the high computational cost (e.g., 100 times more than that of the project gradient descent attack) makes AA infeasible for practitioners with limited computational resources, and also hinders applications of AA in the adversarial training (AT). In this paper, we propose a novel method, minimum-margin (MM) attack, to fast and reliably evaluate adversarial robustness. Compared with AA, our method achieves comparable performance but only costs 3% of the computational time in extensive experiments. The reliability of our method lies in that we evaluate the quality of adversarial examples using the margin between two targets that can precisely identify the most adversarial example. The computational efficiency of our method lies in an effective Sequential TArget Ranking Selection (STARS) method, ensuring that the cost of the MM attack is independent of the number of classes. The MM attack opens a new way for evaluating adversarial robustness and provides a feasible and reliable way to generate high-quality adversarial examples in AT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源