论文标题

HD周围的光环32297:$μ$ M尺寸的彗星灰尘

The halo around HD 32297: $μ$m-sized cometary dust

论文作者

Olofsson, Johan, Thébault, Philippe, Kennedy, Grant M., Bayo, Amelia

论文摘要

我们在碎片盘中观察到的第二代尘埃的光学性质仍然难以捉摸,无论是在毫米波长处的吸收效率还是在近红外波长下(UN)极化相函数。值得庆幸的是,相同的粒子正在经历尺寸依赖性的力(例如辐射压力),并且在高角度分辨率的观测下,我们可以利用这种自然的空间分离。在不同波长的观察结果探测不同大小的不同范围,因此,多波长观测值具有很大的协同作用,可以更好地限制颗粒的光学特性。我们提出了一种同时对球体和ALMA观测的新方法,并将其应用于32297 HD \围绕碎屑盘,重点放在具有不同$β$值的晶粒的空间分布上。这种建模方法几乎不需要对粒子的实际尺寸的假设,因此可以进行解释。我们发现,ALMA观察结果最好通过小型和大型$β$值($ 0.03 $和0.42 $)的组合来复制,而球体观察结果需要几个间隔$β$值。我们讨论了先前在Alma观测中报道的光环的性质,并假设它可能是由过多的$ $ $ M级粒子引起的(这种颗粒过量是其延长终生的结果)。我们在近红外波长和大于几美元的蓬松骨料上建模极化相位函数提供了最佳解决方案。将我们的结果与太阳系的彗星进行比较,我们假设在磁盘中释放的颗粒起源于相当原始的彗星体(以避免蓬松聚集体的压实),然后将其设置在高度偏心的轨道上,这可以解释在长波长下检测到的光环。

The optical properties of the second generation dust that we observe in debris disks remain quite elusive, whether it is the absorption efficiencies at millimeter wavelengths or the (un)polarized phase function at near-infrared wavelengths. Thankfully the same particles are experiencing forces that are size dependent (e.g., radiation pressure), and with high angular resolution observations we can take advantage of this natural spatial segregation. Observations at different wavelengths probe different ranges of sizes, and there is therefore a great synergy in multi-wavelength observations to better constrain the optical properties of the particles. We present a new approach to simultaneously model SPHERE and ALMA observations and apply it to the debris disk around HD\,32297, putting the emphasis on the spatial distribution of the grains with different $β$ values. This modeling approach requires few assumptions on the actual sizes of the particles and the interpretation can therefore be done a posteriori. We find that the ALMA observations are best reproduced with a combination of small and large $β$ values ($0.03$ and $0.42$) while the SPHERE observations require several intervals of $β$ values. We discuss the nature of the halo previously reported in ALMA observations, and hypothesize it could be caused by over-abundant $μ$m-sized particles (the over-abundance being the consequence of their extended lifetime). We model the polarized phase function at near-infrared wavelengths and fluffy aggregates larger than a few $μ$m provide the best solution. Comparing our results with comets of the solar system, we postulate that the particles released in the disk originate from rather pristine cometary bodies (to avoid compaction of the fluffy aggregates) and are then set on highly eccentric orbits, which could explain the halo detected at long wavelengths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源