论文标题

格兰杰因果关系的可解释步态识别

Interpretable Gait Recognition by Granger Causality

论文作者

Balazia, Michal, Hlavackova-Schindler, Katerina, Sojka, Petr, Plant, Claudia

论文摘要

人步态周期中哪些联合相互作用可以用作生物特征?大多数关于步态识别的方法都缺乏解释性。我们通过图形Granger因果推断提出了步态序列的可解释特征表示。标准化运动捕获格式中一个人的步态序列构成了一组3D关节空间轨迹,被设想为及时相互作用的关节因果系统。我们将图形Granger模型(GGM)应用于关节之间的所谓Granger因果图,以此作为对人步态的歧视性和视觉上解释的表示。我们通过建立的分类和类别评估指标评估GGM特征空间中的11个距离函数。我们的实验表明,根据度量,GGM最合适的距离函数是总规范距离和Ky-fan 1-Norm距离。实验还表明,GGM能够检测到最具歧视性的关节相互作用,并且在正确的分类速率和Davies-Bouldin指数中表现优于五个相关的可解释模型。提出的GGM模型可以作为运动机能学步态分析或视频监视中步态识别的补充工具。

Which joint interactions in the human gait cycle can be used as biometric characteristics? Most current methods on gait recognition suffer from the lack of interpretability. We propose an interpretable feature representation of gait sequences by the graphical Granger causal inference. Gait sequence of a person in the standardized motion capture format, constituting a set of 3D joint spatial trajectories, is envisaged as a causal system of joints interacting in time. We apply the graphical Granger model (GGM) to obtain the so-called Granger causal graph among joints as a discriminative and visually interpretable representation of a person's gait. We evaluate eleven distance functions in the GGM feature space by established classification and class-separability evaluation metrics. Our experiments indicate that, depending on the metric, the most appropriate distance functions for the GGM are the total norm distance and the Ky-Fan 1-norm distance. Experiments also show that the GGM is able to detect the most discriminative joint interactions and that it outperforms five related interpretable models in correct classification rate and in Davies-Bouldin index. The proposed GGM model can serve as a complementary tool for gait analysis in kinesiology or for gait recognition in video surveillance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源