论文标题

在线简易示例采矿,用于从组织学图像中进行弱监督的腺体分割

Online Easy Example Mining for Weakly-supervised Gland Segmentation from Histology Images

论文作者

Li, Yi, Yu, Yiduo, Zou, Yiwen, Xiang, Tianqi, Li, Xiaomeng

论文摘要

从组织学图像开发AI辅助腺体分割方法对于自动癌症诊断和预后至关重要。但是,像素级注释的高成本阻碍了其对更广泛的疾病的应用。计算机视觉中现有的弱监督语义分割方法获得了腺体分割的退化结果,因为腺体数据集的特征和问题与一般对象数据集不同。我们观察到,与自然图像不同,组织学图像的关键问题是,不同组织之间拥有阶级与形态同质性和低色对比的混淆。为此,我们提出了一种新颖的在线方法简易示例采矿(OEEM),该挖掘(OEEM)鼓励网络专注于可靠的监督信号而不是嘈杂的信号,因此减轻了伪面具中不可避免的错误预测的影响。根据腺数据集的特征,我们为腺体分割设计了强大的框架。我们的结果分别超过了MIOU的许多完全监督的方法和弱监督的方法,用于腺体分割超过4.4%和6.04%。代码可在https://github.com/xmed-lab/oeem上找到。

Developing an AI-assisted gland segmentation method from histology images is critical for automatic cancer diagnosis and prognosis; however, the high cost of pixel-level annotations hinders its applications to broader diseases. Existing weakly-supervised semantic segmentation methods in computer vision achieve degenerative results for gland segmentation, since the characteristics and problems of glandular datasets are different from general object datasets. We observe that, unlike natural images, the key problem with histology images is the confusion of classes owning to morphological homogeneity and low color contrast among different tissues. To this end, we propose a novel method Online Easy Example Mining (OEEM) that encourages the network to focus on credible supervision signals rather than noisy signals, therefore mitigating the influence of inevitable false predictions in pseudo-masks. According to the characteristics of glandular datasets, we design a strong framework for gland segmentation. Our results exceed many fully-supervised methods and weakly-supervised methods for gland segmentation over 4.4% and 6.04% at mIoU, respectively. Code is available at https://github.com/xmed-lab/OEEM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源