论文标题
皮质流$^{++} $:提高皮质表面重建精度,规律性和互操作性
CorticalFlow$^{++}$: Boosting Cortical Surface Reconstruction Accuracy, Regularity, and Interoperability
论文作者
论文摘要
传统上,使用漫长的图像处理技术(如Freesurfer,Cat或civet)解决了磁共振成像的皮质表面重建问题。这些框架需要很长的时间,即对实时应用不可行,并且对于大规模研究而言是不可行的。最近,已经引入了监督的深度学习方法,以加快这项任务,从而将重建时间从小时到几秒钟。本文将最新的皮质流模型作为蓝图,提出了三个修改,以提高其与现有的表面分析工具的准确性和互操作性,同时又不牺牲其快速推理时间和较低的GPU记忆消耗。首先,我们采用更准确的ODE求解器来减少差异映射近似误差。其次,我们设计了一个例程来产生更平滑的模板网格,避免了由CorticalFlow基于凸形壳的模板中尖锐边缘引起的网格伪像。最后,我们重新铸造表面预测是预测的白色表面的变形,从而导致白色和伴侣表面顶点之间的一对一映射。该映射对于许多现有的表面形态计量学的表面分析工具至关重要。我们将结果方法命名CorticalFlow $^{++} $。使用大规模数据集,我们证明了所提出的更改提供了更高的几何准确性和表面规律性,同时几乎保持了重建时间和GPU内存要求几乎没有变化。
The problem of Cortical Surface Reconstruction from magnetic resonance imaging has been traditionally addressed using lengthy pipelines of image processing techniques like FreeSurfer, CAT, or CIVET. These frameworks require very long runtimes deemed unfeasible for real-time applications and unpractical for large-scale studies. Recently, supervised deep learning approaches have been introduced to speed up this task cutting down the reconstruction time from hours to seconds. Using the state-of-the-art CorticalFlow model as a blueprint, this paper proposes three modifications to improve its accuracy and interoperability with existing surface analysis tools, while not sacrificing its fast inference time and low GPU memory consumption. First, we employ a more accurate ODE solver to reduce the diffeomorphic mapping approximation error. Second, we devise a routine to produce smoother template meshes avoiding mesh artifacts caused by sharp edges in CorticalFlow's convex-hull based template. Last, we recast pial surface prediction as the deformation of the predicted white surface leading to a one-to-one mapping between white and pial surface vertices. This mapping is essential to many existing surface analysis tools for cortical morphometry. We name the resulting method CorticalFlow$^{++}$. Using large-scale datasets, we demonstrate the proposed changes provide more geometric accuracy and surface regularity while keeping the reconstruction time and GPU memory requirements almost unchanged.