论文标题
两个椭圆曲线家族的Mordell-Weil晶格的分子的球体堆积密度
Sphere Packing Densities of Sublattices of the Mordell-Weil Lattices of two Families of Elliptic Curves
论文作者
论文摘要
在本文中,我们研究了两个椭圆形曲线家族的Mordell-Weil晶格的某些最大排名sublattices在特征$ p> 0 $的领域上。我们通过在Sublattices的最低规范上找到这些sublattices的最密集的球体包装上的明确下限,并明确计算其基本域的体积。
In this paper, we examine certain maximal rank sublattices of the Mordell-Weil lattices of two families of elliptic curves over fields of characteristic $p > 0$. We compute explicit lower bounds on the densest sphere packings of these sublattices by finding lower bounds on the minimal norms of the sublattices and explicitly computing the volumes of their fundamental domains.