论文标题

全球保守的解决方案的存在和独特性,用于弱化的camassa-holm方程,随时间加权$ h^1(\ mathbb {r})$ space

Existence and uniqueness of the globally conservative solutions for a weakly dissipative Camassa-Holm equation in time weighted $H^1(\mathbb{R})$ space

论文作者

Meng, Zhiying, Yin, Zhaoyang

论文摘要

在本文中,我们证明了cauchy问题的全球薄弱解决方案的存在和独特性在及时加权$ h^1 $空间的弱耗散的Camassa-Holm方程中。首先,我们通过引入一些新变量来得出等效的半线性系统,并在时间加权$ h^1 $空间中介绍该方程式的全球保守解决方案。其次,我们表明,Pearmon解决方案是$ H^1中的保守弱解决方案。$最后,鉴于保守的解决方案,我们引入了一套针对该特定解决方案量身定制的辅助变量,并证明这些变量满足具有独特解决方案的特定半线性系统。反过来,我们在原始变量中获得了保守解决方案的唯一性。

In this paper, we prove that the existence and uniqueness of globally weak solutions to the Cauchy problem for the weakly dissipative Camassa-Holm equation in time weighted $H^1$ space. First, we derive an equivalent semi-linear system by introducing some new variables, and present the globally conservative solutions of this equation in time weighted $H^1$ space. Second, we show that the peakon solutions are conservative weak solutions in $H^1.$ Finally, given a conservative solution, we introduce a set of auxiliary variables tailored to this particular solution, and prove that these variables satisfy a particular semilinear system having unique solutions. In turn, we get the uniqueness of the conservative solution in the original variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源