论文标题
带有磁场的3D原始方程的全球适合度
Global well-posedness of the 3D Primitive Equations with magnetic field
论文作者
论文摘要
在本文中,在薄域上考虑了带有磁场(PEM)的三维原始方程。我们向三维不可压缩的PEM展示了强大解决方案的全球存在和唯一性(规律性),而对初始数据没有任何小假设。更确切地说,对于任何给定的$ h^2 $平滑的初始数据,全球范围内都存在独特的强大解决方案。
In this paper, the three-dimensional primitive equations with magnetic field (PEM) are considered on a thin domain. We showed the global existence and uniqueness (regularity) of strong solutions to the three-dimensional incompressible PEM without any small assumption on the initial data. More precisely, there exists a unique strong solution globally in time for any given $H^2$-smooth initial data.