论文标题
可解释的文本建模的潜扩散基于能量的模型
Latent Diffusion Energy-Based Model for Interpretable Text Modeling
论文作者
论文摘要
潜在空间基于能源的模型(EBM),也称为基于能量的先验,对生成建模引起了人们的兴趣。由于其在潜在空间的配方和强大的建模能力方面的灵活性所推动,最近构建的作品已经进行了有趣的尝试,目的是针对文本建模的解释性。但是,潜在空间EBM还继承了数据空间中EBM的一些缺陷。实践中退化的MCMC抽样质量会导致培训中的发电质量和不稳定差,尤其是在具有复杂潜在结构的数据上。受到最近的努力的启发,该努力利用扩散恢复的可能性学习作为对抽样问题的治疗,我们在变异学习框架中引入了扩散模型和潜在空间EBM之间的新型共生,这是潜在的扩散能量基于能量的模型。我们与信息瓶颈共同开发了基于几何聚类的正则化,以进一步提高学到的潜在空间的质量。对几个具有挑战性的任务进行的实验表明,我们模型在可解释的文本建模上的出色表现而不是强大的同行。
Latent space Energy-Based Models (EBMs), also known as energy-based priors, have drawn growing interests in generative modeling. Fueled by its flexibility in the formulation and strong modeling power of the latent space, recent works built upon it have made interesting attempts aiming at the interpretability of text modeling. However, latent space EBMs also inherit some flaws from EBMs in data space; the degenerate MCMC sampling quality in practice can lead to poor generation quality and instability in training, especially on data with complex latent structures. Inspired by the recent efforts that leverage diffusion recovery likelihood learning as a cure for the sampling issue, we introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework, coined as the latent diffusion energy-based model. We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space. Experiments on several challenging tasks demonstrate the superior performance of our model on interpretable text modeling over strong counterparts.